Some results on integration of subdifferentials

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

SomeResultsonIntegrationofSubdierentialsZiliWuandJaneJ.YeJuly21,1999DepartmentofMathematicsandStatistics,UniversityofVictoria,Victoria,B.C.,CanadaV8W3P4Keywordsandphrases.Nonsmoothanalysis,integrationofsubdierentials,Clarkesubdierential,Michel-Penotsubdierential,lowerDinisubdierential,Frechetsubdierential,m-subdierentialand@-subdierential.1IntroductionIntegrationofsubdierentialsisafundamentalprobleminnonsmoothanalysis.Theproblemiswhetherornottheconditionthatthesubdierentialoffcontainsthesubdierentialofgimpliesthatfandgdieronlybyaconstant.Forthisproblem,perhapstheearlistresultisTheorem24.9inRockafellar[16],whichassertsthatiffandgaretwoclosedproperconvexfunctionssuchthat@cg(x)@cf(x)8x2Rn;where@cisthesubdierentialinthesenseofconvexanalysis,thenfandgdierbyaconstant.Someprogressonthestudyofintegrationofsubdierentialsfornonconvexfunc-tionshasbeenmadeoverthelastdecadeorso.Rockafellar[17]provedthatiff;g:Rn!RarelocallyLipschitzandfisClarkeregular,andiftheClarkesubdif-ferential@g(x)@f(x)8x2Rn,theng(x)=f(x)+CforsomeconstantC.Thisresultwasgeneralizedtoupper-upperandupper-lowerregularfunctionsinanyBa-nachspacebyCorreaandThibault[11].SomeclassesofnonconvexfunctionswhichcanbedeterminedbytheirClarkesubdierentials(i.e.,anytwofunctionsfromthesameclassdieronlybyaconstantiftheirClarkesubdierentialscoincide)have1alsobeenfound.Qi[15]showedthataprimalfunctionwhosedomainisconnectedisdeterminedbyitsClarkesubdierentialuptoanadditiveconstant.Poliquin[14]foundaclassoffunctionscalledprimallowernicefunctionswhichcanbedeterminedbytheirClarkesubdierentials(hencetheirproximalsubdierentialssincetheyco-incideforthisclassoffunctions)uptoaconstant.OtherresultsonintegrationofsubdierentialsincludethoseofBorwein[2],CorreaandJofre[10],ThibaultandZagrodny[18].AlthoughmostoftheseintegrationresultsconcerntheClarkesubdierential,in-tegratingsubdierentialsotherthanthatofClarkeisalsoimportant.ClarkeandRedheer[7]provedthatifg:Rn!(1;1]isalowersemicontinuousfunction,fisacontinuouslytwicedierentiablefunctiononRnand@g(x)@f(x),where@denotestheproximalsubdierential,thenf(x)=g(x)+CforsomeconstantC.Theyalsoindicatedthatiffisdierentiableand@Fg(x)@Ff(x),where@FistheFrechetsubdierential,thenfandgdieronlybyaconstant.Inthispaper,westudyprimarilytheintegrationof@-subdierentials,aclassofsubdierentialswhichincludesthelowerDinisubdierential,theFrechetsubdif-ferentialandthem-subdierential.Weprovethatiflowersemicontinuousfunctionsf:X!R,g:X!(1;1]aresuchthatgfislowersemicontinuousonanonemptyopenconvexsubsetUofX,andforeachxinU,@f(x)[@(f)(x)isnonemptyandbounded,thengdiersfromfbyaconstantonUifandonlyifforsomesubdierential@0andanyxinU,@g(x)@f(x)forxwith@f(x)6=;,@(f)(x)@(g)(x)forxwith@f(x)=;and@0(gf)(x)@(gf)(x),where@0hisasubdierentialhavingthepropertythat@0h(x)f0gonUimpliesthathisconstantonU.Thisresultservestounifyandextendseveralresultsintheliterature.Inparticular,aconsequenceoftheaboveresultisageneralizationofRockafellar’sresultonintegrabilityofregularfunctions,i.e.,iffisalocallyLipschitzfunctionandgisanextended-valuedlowersemicontinuousfunctiononanAsplundspaceoraseparableBanachspaceandiffisMichel-Penotregular(weakerthanClarkeregular)and@g(x)@f(x),where@denotesthelowerDinisubdierential(weakerthan@g(x)@f(x))forallx,thenfandgdierbyaconstant.Wealsoobtainsimilarresultsforaseparatelyregularfunction,i.e.,abivariatefunctiononaproductoftwoAsplundspaces(ortwoseparableBanachspaces)XYwhichisClarkeregularasafunctionofxandyseparately.OurmainresultalsoextendsClarkeandRedheer’sresultbyallowingftobeanylocalLipschitzfunctionwhoseproximalsubdierential2orFrechetsubdierentialisnonemptyeverywhere.Weorganizethepaperasfollows.Inx2,wegiveconditionsunderwhichsome@-subdierentialsarenonemptyandsomeresultsonthecalculusofthesesubdier-entials.Inx3,wediscussourintegrationresultsindetail.Throughoutthispaper,XisarealBanachspacewhoseopenunitballanddualspacearedenotedbyBandXrespectively.HdenotesarealHilbertspace.2CalculusofsubdierentialsWebrieyreviewsomewell-knownnotionsofsubdierentials.Letf:X!RbeLipschitzofrankLnearx2X.TheClarkederivativeoffatxinthedirectionvisdenedbyf(x;v):=limsupy!xt!0+f(y+tv)f(y)t:TheMichel-Penotderivativeoffatxinthedirectionvisdenedbyf(x;v):=supylimsupt!0+f(x+ty+tv)f(x+ty)t:TheClarkesubdierentialoffatxistheset@f(x):=f2X:h;vif(x;v)8v2Xg:TheMichel-Penotsubdierentialoffatxistheset@f(x):=f2X:h;vif(x;v)8v2Xg:SincetheClarkeandMichel-Penotderivativesarebothsublinearfunctionsofvandtheirvaluesf(x;v)andf(x;v)areboundedbyLkvk,theircorrespondingsubdif-ferentialsarenonempty.Letf:X!R[f1gbelowersemicontinuous(l.s.c.)atx2domf:=fx2X:f(x)1gandvbeinX.ThelowerDiniderivativeoffatxinthedirectionvisdenedbyf(x;v):=liminft!0+f(x+tv)f(x)t:3ThelowerDinisubdierentialoffatxistheset@f(x):=f2X:h;vif(x;v)8v2Xg:TheFrechetsubdierentialoffatxistheset@Ff(x):=f2X:f(y)f(x)+(kyxk)h;yxiforsome(t)withlimt!0+(t)t=0;0andanyyinx+Bg:Tounifycertainnotionsofsubdierentials,wedenethem-subdierent

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功