大学生校园网—VvSchool.CN线性代数综合测试题共3页第1页线性代数期末考试题一、填空题(将正确答案填在题中横线上。每小题2分,共10分)1.若022150131x,则__________。2.若齐次线性方程组000321321321xxxxxxxxx只有零解,则应满足。3.已知矩阵nsijcCBA)(,,,满足CBAC,则A与B分别是阶矩阵。4.矩阵323122211211aaaaaaA的行向量组线性。5.n阶方阵A满足032EAA,则1A。二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分)1.若行列式D中每个元素都大于零,则0D。()2.零向量一定可以表示成任意一组向量的线性组合。()3.向量组maaa,,,21中,如果1a与ma对应的分量成比例,则向量组saaa,,,21线性相关。()4.0100100000010010A,则AA1。()5.若为可逆矩阵A的特征值,则1A的特征值为。()三、单项选择题(每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分)1.设A为n阶矩阵,且2A,则TAA()。①n2②12n③12n④42.n维向量组s,,,21(3sn)线性无关的充要条件是()。①s,,,21中任意两个向量都线性无关②s,,,21中存在一个向量不能用其余向量线性表示③s,,,21中任一个向量都不能用其余向量线性表示大学生校园网—VvSchool.CN线性代数综合测试题共3页第2页④s,,,21中不含零向量3.下列命题中正确的是()。①任意n个1n维向量线性相关②任意n个1n维向量线性无关③任意1n个n维向量线性相关④任意1n个n维向量线性无关4.设A,B均为n阶方阵,下面结论正确的是()。①若A,B均可逆,则BA可逆②若A,B均可逆,则AB可逆③若BA可逆,则BA可逆④若BA可逆,则A,B均可逆5.若4321,,,是线性方程组0A的基础解系,则4321是0A的()①解向量②基础解系③通解④A的行向量四、计算题(每小题9分,共63分)1.计算行列式xabcdaxbcdabxcdabcxd。2.设BAAB2,且A,410011103求B。3.设,1000110001100011B2000120031204312C且矩阵满足关系式'(),XCBE求。4.问a取何值时,下列向量组线性相关?123112211,,221122aaa。5.为何值时,线性方程组223321321321xxxxxxxxx有唯一解,无解和有无穷多解?当方程组有无穷多解时求其通解。大学生校园网—VvSchool.CN线性代数综合测试题共3页第3页6.设.77103,1301,3192,01414321求此向量组的秩和一个极大无关组,并将其余向量用该极大无关组线性表示。7.设100010021A,求A的特征值及对应的特征向量。五、证明题(7分)若A是n阶方阵,且,IAA,1A证明0IA。其中I为单位矩阵。大学生校园网—VvSchool.CN线性代数综合测试题共3页第4页×××大学线性代数期末考试题答案一、填空题1.52.13.nnss,4.相关5.EA3二、判断正误1.×2.√3.√4.√5.×三、单项选择题1.③2.③3.③4.②5.①四、计算题1.3)(0000000001)(1111)(xdcbaxxxxdcbdcbaxdxcbdcxbdcbxdcbdcbaxdxcbdcbaxdcxbdcbaxdcbxdcbaxdcbdcbaxdxcbadcxbadcbxadcbax2.ABEA)2(111122112)2(1EA,322234225)2(1AEAB3.121001210012000112100121001200011234012300120001)(10002100321043211'1''BCEXBCBCBC,,大学生校园网—VvSchool.CN线性代数综合测试题共3页第5页4.)22()12(812121212121212321aaaaaaaa,,当21a或1a时,向量组321aaa,,线性相关。5.①当1且2时,方程组有唯一解;②当2时方程组无解③当1时,有无穷多组解,通解为10101100221cc6.0000110020102001131300161600241031217130104302410312171307311100943121)(4321aaaa,,,则34321aaaar,,,,其中321aaa,,构成极大无关组,321422aaaa7.0)1(1200100013AE特征值1321,对于λ1=1,0200000001AE,特征向量为100001lk五、证明题AIAIAIAAAAIA大学生校园网—VvSchool.CN线性代数综合测试题共3页第6页∴02AI,∵0AI