A123储能和车用电池

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

ElectrochemicalEnergyStorageforTransportationdthPGidElectrochemicalEnergyStorageforTransportationdthPGidandthePowerGridandthePowerGridYet-MingChiangDepartmentofMaterialsScienceandEngineeringDepartmentofMaterialsScienceandEngineeringMassachusettsInstituteofTechnologyNanoscaleolivineNanodomainstrainaccommodationinNanoscaleolivinecathodeaccommodationinLiMnO2cathodeTwohugeindustriesaretransformingandanewoneisemerging...BatteryIndustryIndustryBatteries,TenYearsAgo…..Liionbatterieshadbecomethepreferredpower•Li-ionbatterieshadbecomethepreferredpowersourceforcellphonesandlaptops•Safetyissuesinearly2000’s:laptopbatteryfiresinSafetyissuesinearly2000s:laptopbatteryfiresinthenews,millionsofunitsrecalled•TheToyotaPriushybridelectricvehicle(HEV)hadjustlaunched,tomuchskepticism•Unclearwhetherlithiumionbatteriescouldeverhavethepowersafetylifetimetobeusedinhavethepower,safety,lifetime,tobeusedinautomotiveapplications•Performancemetricsnotsuitableforautomotive:Performancemetricsnotsuitableforautomotive:100Wh/kg,200W/kg,300cyclesBatteries,Today…..•ToyotaPriusis(was?)best-sellingcarinU.S.,ChevyVoltPHEVandNissanLeafBEVreadytolaunchin2010•MultipleLi-ionbatterymakersscalinguptomassproduction•Debatehasshiftedtobatterycostandhowfastitwilldecrease•PerformanceofautomotiveLi-ioncells:150Wh/kg,3000W/kg,1000cycles,~10yearprojectedcalendarlife,$1000-$1700/kWhatsystemlevelsystemlevel•HighestpowerLi-ion:20,000W/kg,65Wh/kg•Li-ionmakinginroadsintolargescalegridstorage(2MW,0.5MWhunits)Batteries,In10Years….•HEVoptionforallvehicles;amillionPHEVsontheroad•Celllevelperformanceof400Wh/kg800Wh/L•Celllevelperformanceof400Wh/kg,800Wh/L,$100/kWhwillenable200milebatteryelectricvehicles•Next-gen,“beyond-lithium”chemistry?g,yy•Widespreadadoptionofbatteriesforhighpower,short-termstorageintheelectricgrid•Renewable(PV,wind)haveintegratedstorageoptionsElectrificationofTransportationXEVs:MultipleLevelsofElectrificationICEHEVToyotaPriusHondaInsightFordEscapePHEVPHEVA123/HymotionconversionGMVoltFiskerKarmaBEVFiskerKarmaTeslaRoadsterNissanLeafenginebattery7Charge-depletingvs.charge-sustaining1008090100HEVPHEV607080(SOC)EV405060ofCharge(HEV203040StatePHEV01020EVCharge-depletingCharge-sustaining0ImpactofPHEVsonAnnualGasolineSavingNationwideTransportation accounts for 87% of the increase in petroleum consumption, dominated by growth in fuel use for light‐duty vehicles.‐AnnualEnergyOutlook2006withProjectionsto2030By End of 2004 there are 243 Million passenger vehicle on the road.Thisnumberisprojectedtobedoubleby2030~500millionpassengervehicleAnnual Energy Outlook 2006 with Projections to 2030 This number is projected to be double by 2030 500 million passenger vehicle•If half of that are PHEV40 oil consumption in US will drop 6 million barrel per day•If all of that are PHEV40, oil consumption in US will drop 10 million barrel per day500)Annual Gas Saving per Vehicle‐Based on 1995 NPTS Daily Driving Pattern161820ayHistoryProjectionTotal Oil Import300400solineSaved(gal)810121416BarrelsPerDa50% PHEV 100%PHEV0100200AnnualGas02468MillionBPHEV Market Entry100% PHEV 0HEVPHEV20PHEV40199019952000200520102015202020252030ImpactofPlug-InHybridsonWell-to-WheelGHGEmission•Well-to-WheelPaths:¾Oil-Gasoline-CV¾Coal-Electricity-EVUSPoerGeneration(NationalBlend)¾CoalElectricityEV¾NG(CCGT)-Electricity-EV•Well-to-WheelCO2Emission:NuclearHydro9%Oil2%Renewable3%USPowerGeneration(NationalBlend)Coal49%NGNuclear19%Oil-Gasoline166lb/MMBtu181miles/MMBtu416g/mileCoal-Electric224lb/MMBtu312miles/MMBtu*327g/mile18%450CO2Emission(g/mile)NG-Electric138lb/MMBtu447miles/MMBtu*141g/mile*PureEVmiles9,000ns)HistoryProjection200250300350400450sion(g/mile)7,0008,000illionmetrictonHistoryProjectionTotalCO2Emission50%PHEV*050100150200CO2Emiss5,0006,0002Emission(miPHEVMarketEntry100%PHEV*CVPHEV20PHEV40NationalBlendCoalNGCCGT4,000199019952000200520102015202020252030CO2y*Assuming500millionpassengervehiclein2030AlsoneednewpowergenerationtechnologyGHGforPHEV20technology/mile)ission(g/egasem[carbonfreeelectricity]reenhousTfltGrTypeofpowerplantsElectrochemicalReactioninaLithium-IonBatteryφe-e-ChargeφLi+DischargeDischargePositiveElectrodeNegativeelectrodeDuringDischarge:Li++e-+Co4+=Li++Co3+Li=Li++e-Li1-xCoO2LiCoO2→LiC6C→(Chargingisthereverseofthis)EnergyofaBattery(Wh)=Voltage(V)xCapacity(Ah)DeterminedbyPropertiesofCathodeandAnodeφLithiumChemicalPotentialAtAnodee-e-Li+ChargeμLi≤μLi,metal•LimetalCbDischargePositiveElectrodeNegativeelectrode•Carbon•Metalalloys•Nanoscaleoxides()FzGFzianodeicathodeii00,0,1Δ−=−−=ΔμμφμLiμLi,metalNernstEq.cMaterialAverageVoltagevs.LiSpecificCapacity(mAh/g)EnergyDensityofElectrode(Wh/kg)LiCO39137534aLi+M3+O2-Li1-xCoO23.9137534Li1-xNiO23.8220836Li1-xMn2O44.0119476LiMO2(R3m)Li1-xFePO43.5170595ExistingBatteryDesignsareHighlyMassandVolumeInefficientMassPercentCathode25%Anode13%Othercomponents13%62%VolumePercentCathode12%Anode14%Othercomponents74%CathodeBinderSolutionConductiveAdditiveJ.-M.Tarascon,Nature414,359-367(2001)R.Moshtev,J.PowerSources91,86-91(2000)SchematicviewofSlitterPressRollSli

1 / 46
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功