ElectrochemicalEnergyStorageforTransportationdthPGidElectrochemicalEnergyStorageforTransportationdthPGidandthePowerGridandthePowerGridYet-MingChiangDepartmentofMaterialsScienceandEngineeringDepartmentofMaterialsScienceandEngineeringMassachusettsInstituteofTechnologyNanoscaleolivineNanodomainstrainaccommodationinNanoscaleolivinecathodeaccommodationinLiMnO2cathodeTwohugeindustriesaretransformingandanewoneisemerging...BatteryIndustryIndustryBatteries,TenYearsAgo…..Liionbatterieshadbecomethepreferredpower•Li-ionbatterieshadbecomethepreferredpowersourceforcellphonesandlaptops•Safetyissuesinearly2000’s:laptopbatteryfiresinSafetyissuesinearly2000s:laptopbatteryfiresinthenews,millionsofunitsrecalled•TheToyotaPriushybridelectricvehicle(HEV)hadjustlaunched,tomuchskepticism•Unclearwhetherlithiumionbatteriescouldeverhavethepowersafetylifetimetobeusedinhavethepower,safety,lifetime,tobeusedinautomotiveapplications•Performancemetricsnotsuitableforautomotive:Performancemetricsnotsuitableforautomotive:100Wh/kg,200W/kg,300cyclesBatteries,Today…..•ToyotaPriusis(was?)best-sellingcarinU.S.,ChevyVoltPHEVandNissanLeafBEVreadytolaunchin2010•MultipleLi-ionbatterymakersscalinguptomassproduction•Debatehasshiftedtobatterycostandhowfastitwilldecrease•PerformanceofautomotiveLi-ioncells:150Wh/kg,3000W/kg,1000cycles,~10yearprojectedcalendarlife,$1000-$1700/kWhatsystemlevelsystemlevel•HighestpowerLi-ion:20,000W/kg,65Wh/kg•Li-ionmakinginroadsintolargescalegridstorage(2MW,0.5MWhunits)Batteries,In10Years….•HEVoptionforallvehicles;amillionPHEVsontheroad•Celllevelperformanceof400Wh/kg800Wh/L•Celllevelperformanceof400Wh/kg,800Wh/L,$100/kWhwillenable200milebatteryelectricvehicles•Next-gen,“beyond-lithium”chemistry?g,yy•Widespreadadoptionofbatteriesforhighpower,short-termstorageintheelectricgrid•Renewable(PV,wind)haveintegratedstorageoptionsElectrificationofTransportationXEVs:MultipleLevelsofElectrificationICEHEVToyotaPriusHondaInsightFordEscapePHEVPHEVA123/HymotionconversionGMVoltFiskerKarmaBEVFiskerKarmaTeslaRoadsterNissanLeafenginebattery7Charge-depletingvs.charge-sustaining1008090100HEVPHEV607080(SOC)EV405060ofCharge(HEV203040StatePHEV01020EVCharge-depletingCharge-sustaining0ImpactofPHEVsonAnnualGasolineSavingNationwideTransportation accounts for 87% of the increase in petroleum consumption, dominated by growth in fuel use for light‐duty vehicles.‐AnnualEnergyOutlook2006withProjectionsto2030By End of 2004 there are 243 Million passenger vehicle on the road.Thisnumberisprojectedtobedoubleby2030~500millionpassengervehicleAnnual Energy Outlook 2006 with Projections to 2030 This number is projected to be double by 2030 500 million passenger vehicle•If half of that are PHEV40 oil consumption in US will drop 6 million barrel per day•If all of that are PHEV40, oil consumption in US will drop 10 million barrel per day500)Annual Gas Saving per Vehicle‐Based on 1995 NPTS Daily Driving Pattern161820ayHistoryProjectionTotal Oil Import300400solineSaved(gal)810121416BarrelsPerDa50% PHEV 100%PHEV0100200AnnualGas02468MillionBPHEV Market Entry100% PHEV 0HEVPHEV20PHEV40199019952000200520102015202020252030ImpactofPlug-InHybridsonWell-to-WheelGHGEmission•Well-to-WheelPaths:¾Oil-Gasoline-CV¾Coal-Electricity-EVUSPoerGeneration(NationalBlend)¾CoalElectricityEV¾NG(CCGT)-Electricity-EV•Well-to-WheelCO2Emission:NuclearHydro9%Oil2%Renewable3%USPowerGeneration(NationalBlend)Coal49%NGNuclear19%Oil-Gasoline166lb/MMBtu181miles/MMBtu416g/mileCoal-Electric224lb/MMBtu312miles/MMBtu*327g/mile18%450CO2Emission(g/mile)NG-Electric138lb/MMBtu447miles/MMBtu*141g/mile*PureEVmiles9,000ns)HistoryProjection200250300350400450sion(g/mile)7,0008,000illionmetrictonHistoryProjectionTotalCO2Emission50%PHEV*050100150200CO2Emiss5,0006,0002Emission(miPHEVMarketEntry100%PHEV*CVPHEV20PHEV40NationalBlendCoalNGCCGT4,000199019952000200520102015202020252030CO2y*Assuming500millionpassengervehiclein2030AlsoneednewpowergenerationtechnologyGHGforPHEV20technology/mile)ission(g/egasem[carbonfreeelectricity]reenhousTfltGrTypeofpowerplantsElectrochemicalReactioninaLithium-IonBatteryφe-e-ChargeφLi+DischargeDischargePositiveElectrodeNegativeelectrodeDuringDischarge:Li++e-+Co4+=Li++Co3+Li=Li++e-Li1-xCoO2LiCoO2→LiC6C→(Chargingisthereverseofthis)EnergyofaBattery(Wh)=Voltage(V)xCapacity(Ah)DeterminedbyPropertiesofCathodeandAnodeφLithiumChemicalPotentialAtAnodee-e-Li+ChargeμLi≤μLi,metal•LimetalCbDischargePositiveElectrodeNegativeelectrode•Carbon•Metalalloys•Nanoscaleoxides()FzGFzianodeicathodeii00,0,1Δ−=−−=ΔμμφμLiμLi,metalNernstEq.cMaterialAverageVoltagevs.LiSpecificCapacity(mAh/g)EnergyDensityofElectrode(Wh/kg)LiCO39137534aLi+M3+O2-Li1-xCoO23.9137534Li1-xNiO23.8220836Li1-xMn2O44.0119476LiMO2(R3m)Li1-xFePO43.5170595ExistingBatteryDesignsareHighlyMassandVolumeInefficientMassPercentCathode25%Anode13%Othercomponents13%62%VolumePercentCathode12%Anode14%Othercomponents74%CathodeBinderSolutionConductiveAdditiveJ.-M.Tarascon,Nature414,359-367(2001)R.Moshtev,J.PowerSources91,86-91(2000)SchematicviewofSlitterPressRollSli