数列求和7种方法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:dnnnaaanSnn2)1(2)(112、等比数列求和公式:)1(11)1()1(111qqqaaqqaqnaSnnn3、)1(211nnkSnkn4、)12)(1(6112nnnkSnkn5、213)]1(21[nnkSnkn[例1]已知3log1log23x,求nxxxx32的前n项和.解:由212loglog3log1log3323xxx由等比数列求和公式得nnxxxxS32(利用常用公式)=xxxn1)1(=211)211(21n=1-n21[例2]设Sn=1+2+3+…+n,n∈N*,求1)32()(nnSnSnf的最大值.解:由等差数列求和公式得)1(21nnSn,)2)(1(21nnSn(利用常用公式)∴1)32()(nnSnSnf=64342nnn=nn64341=50)8(12nn501∴当88n,即n=8时,501)(maxnf题1.等比数列的前n项和Sn=2n-1,则=2题2.若12+22+…+(n-1)2=an3+bn2+cn,则a=,b=,c=.解:原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an·bn}的前n项和,其中{an}、{bn}分别是等差数列和等比数列.[例3]求和:132)12(7531nnxnxxxS………………………①解:由题可知,{1)12(nxn}的通项是等差数列{2n-1}的通项与等比数列{1nx}的通项之积设nnxnxxxxxS)12(7531432……………………….②(设制错位)①-②得nnnxnxxxxxSx)12(222221)1(1432(错位相减)再利用等比数列的求和公式得:nnnxnxxxSx)12(1121)1(1∴21)1()1()12()12(xxxnxnSnnn[例4]求数列,22,,26,24,2232nn前n项的和.解:由题可知,{nn22}的通项是等差数列{2n}的通项与等比数列{n21}的通项之积设nnnS2226242232…………………………………①14322226242221nnnS………………………………②(设制错位)①-②得1432222222222222)211(nnnnS(错位相减)1122212nnn∴1224nnnS练习题1已知,求数列{an}的前n项和Sn.答案:练习题2的前n项和为____3答案:三、反序相加法求和这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个)(1naa.[例5]求证:nnnnnnnCnCCC2)1()12(53210证明:设nnnnnnCnCCCS)12(53210…………………………..①把①式右边倒转过来得0113)12()12(nnnnnnnCCCnCnS(反序)又由mnnmnCC可得nnnnnnnCCCnCnS1103)12()12(…………..……..②①+②得nnnnnnnnnCCCCnS2)1(2))(22(2110(反序相加)∴nnnS2)1([例6]求89sin88sin3sin2sin1sin22222的值解:设89sin88sin3sin2sin1sin22222S………….①将①式右边反序得1sin2sin3sin88sin89sin22222S…………..②(反序)又因为1cossin),90cos(sin22xxxx①+②得(反序相加))89cos89(sin)2cos2(sin)1cos1(sin2222222S=89∴S=44.5题1已知函数(1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边4(2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7]求数列的前n项和:231,,71,41,1112naaan,…解:设)231()71()41()11(12naaaSnn将其每一项拆开再重新组合得)23741()1111(12naaaSnn(分组)当a=1时,2)13(nnnSn=2)13(nn(分组求和)当1a时,2)13(1111nnaaSnn=2)13(11nnaaan[例8]求数列{n(n+1)(2n+1)}的前n项和.解:设kkkkkkak2332)12)(1(∴nknkkkS1)12)(1(=)32(231kkknk将其每一项拆开再重新组合得Sn=kkknknknk1213132(分组)5=)21()21(3)21(2222333nnn=2)1(2)12)(1(2)1(22nnnnnnn(分组求和)=2)2()1(2nnn五、裂项法求和这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:(1))()1(nfnfan(2)nnnntan)1tan()1cos(cos1sin(3)111)1(1nnnnan(4))121121(211)12)(12()2(2nnnnnan(5)])2)(1(1)1(1[21)2)(1(1nnnnnnnan(6)nnnnnnnnSnnnnnnnnna2)1(11,2)1(12121)1()1(221)1(21则(7))11(1))((1CAnBAnBCCAnBAnan(8)111nannnn[例9]求数列,11,,321,211nn的前n项和.解:设nnnnan111(裂项)则11321211nnSn(裂项求和)=)1()23()12(nn=11n6[例10]在数列{an}中,11211nnnnan,又12nnnaab,求数列{bn}的前n项的和.解:∵211211nnnnnan∴)111(82122nnnnbn(裂项)∴数列{bn}的前n项和)]111()4131()3121()211[(8nnSn(裂项求和)=)111(8n=18nn[例11]求证:1sin1cos89cos88cos12cos1cos11cos0cos12解:设89cos88cos12cos1cos11cos0cos1S∵nnnntan)1tan()1cos(cos1sin(裂项)∴89cos88cos12cos1cos11cos0cos1S(裂项求和)=]}88tan89[tan)2tan3(tan)1tan2(tan)0tan1{(tan1sin1=)0tan89(tan1sin1=1cot1sin1=1sin1cos2∴原等式成立练习题1.答案:.练习题2。=答案:六、分段求和法(合并法求和)针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这7些项放在一起先求和,然后再求Sn.[例12]求cos1°+cos2°+cos3°+···+cos178°+cos179°的值.解:设Sn=cos1°+cos2°+cos3°+···+cos178°+cos179°∵)180cos(cosnn(找特殊性质项)∴Sn=(cos1°+cos179°)+(cos2°+cos178°)+(cos3°+cos177°)+···+(cos89°+cos91°)+cos90°(合并求和)=0[例13]数列{an}:nnnaaaaaa12321,2,3,1,求S2002.解:设S2002=2002321aaaa由nnnaaaaaa12321,2,3,1可得,2,3,1654aaa,2,3,1,2,3,1121110987aaaaaa……2,3,1,2,3,1665646362616kkkkkkaaaaaa∵0665646362616kkkkkkaaaaaa(找特殊性质项)∴S2002=2002321aaaa(合并求和)=)()()(66261612876321kkkaaaaaaaaaa2002200120001999199819941993)(aaaaaaa=2002200120001999aaaa=46362616kkkkaaaa=5[例14]在各项均为正数的等比数列中,若103231365logloglog,9aaaaa求的值.解:设1032313logloglogaaaSn由等比数列的性质qpnmaaaaqpnm(找特殊性质项)和对数的运算性质NMNMaaalogloglog得)log(log)log(log)log(log6353932310313aaaaaaSn(合并求和)=)(log)(log)(log6539231013aaaaaa8=9log9log9log333=10练习、求和:练习题1设,则=___答案:2.练习题2.若Sn=1-2+3-4+…+(-1)n-1·n,则S17+S33+S50等于()A.1B.-1C.0D.2解:对前n项和要分奇偶分别解决,即:Sn=答案:A练习题31002-992+982-972+…+22-12的值是A.5000B.5050C.10100D.20200解:并项求和,每两项合并,原式=(100+99)+(98+97)+…+(2+1)=5050.答案:B七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,是一个重要的方法.[例15]求11111111111个n之和.解:由于)110(91999991111111kkk个个(找通项及特征)∴11111111111个n=)110(91)110(91)110(91)110(91321n(分组求和)=)1111(91)10101010(911321个nn=9110)110(1091nn9=)9

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功