初中数学单元教学设计策略及案例分析2020/6/262一、教学设计的两个层次二、研究数学单元教学设计的意义三、初中数学单元教学设计的基本环节四、初中数学单元复习教学设计2020/6/263一、教学设计的两个层次:宏观层次(总体规划设计):课程方案设计、课程标准设计、编写教材等微观设计(课堂教学过程设计):学期教学设计、单元教学设计(章节教学设计、单元教学设计),课时教学设计。本文以章节教学设计为主2020/6/264二、数学单元教学设计的意义(一)单元教学设计:是运用系统方法对某个单元所涉及到得各种课程资源进行有机整合、对教学过程中相互联系的各个部分做出整体安排的一种构想,即为达到整个单元教学目标,对教什么、怎样教以及达到什么结果所进行的单元教学策划。2020/6/265(二)数学单元教学设计的作用教学单元是介于学期教学和课时教学之间相对独立的完整的教学单位。以教学单元为单位组织教学,有利于弄清单元目标与课时目标之间的层次关系,有利于系统地有计划地反馈调节教学过程,从单元整体上较好地落实因材施教,防止缺陷积累。教学单元具有相对完整的知识体系,因而可以从单元整体考虑对学生进行“双基”和能力的综合训练,使学生形成较好的认知结构。2020/6/266实行单元教学设计体现了整体系统的思想,对课时教学设计具有指导作用,同时,还有利于从单元整体上积累教学中的经验与教训。单元设计要求,是整个教学设计的其中一个环节,也是教学中非常重要的环节,教学设计的成功与否直接关系到教学效果的好坏,直接影响了学生对知识的掌握与否,也对后续教学有很大的帮助.做好单元教学设计,教师准确掌握教学进度、把握教学、解读教材,学生在学习的过程中能够循序渐进,学生对一个单元的知识有一个系统的理解,学生能够知道本单元在初中数学中的地位以及与前后章节的联系.2020/6/267单元设计就是整体把握!从一个整体的角度去把握教学。结合自己的经验,根据整个单元的内容,根据你的学生的学习,对整个教学的内容、过程进行科学合理的安排。2020/6/268三、初中数学单元教学设计环节课程标准分析、教材分析、学情分析、学习目标确定、分课时教学设计、单元测试设计、评价设计、中考分析等几个环节。一元二次方程2020/6/269(一)课程标准分析(1)能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型(2)经历心算、画图或利用计算器等估计方程解的过程。(3)掌握等式的基本性质。(6)理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程(参见例51)。(7)能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等。(8)了解一元二次方程的根与系数的关系(不要求应用这个关系解决其他问题)。(9)能根据具体问题的实际意义,检验方程的解是否合理。2020/6/2610三、初中数学单元教学设计环节(二)教材分析1、分析教材的地位与作用:案例1:一元二次方程(北师大版九年级上册第二章)2020/6/2611作为数学的一个重要分支,方程是刻画现实世界的一个有效的数学模型.随着数学应用的日趋广泛,方程的工具作用显得益发重要.在前几个学期已经学习了一元一次方程(7上)、二元一次方程组(8上)、可化为一元一次方程的分式方程(8下)等,初步感受了方程的模型作用,并积累了一些利用方程解决实际问题的经验,解决了一些实际问题,知道了基本步骤(审设列解验答).生活中关于方程的模型并不全是线性的,另一种方程——一元二次方程在现实生活中具有同样广泛的应用.本章将学习一元二次方程(有关概念、解法和应用等)2020/6/2612在总体设计思路上,本章与已学过的有关方程类似,遵循了“问题情境---建立模型---拓展、应用”的模式,首先通过具体问题情境列方程、归纳出一元二次方程的有关概念,然后探索其各种解法,并在现实情境中加以应用,提高应用意识和能力.2020/6/2613第1节通过丰富的实例,如“花边有多宽”、“梯子的底端滑动多少米”等问题,列出方程,观察、归纳出一元二次方程的有关概念,体会方程的模型思想。第2-5节,通过具体方程逐步探索一元二次方程的解法(直接开平方法、配方法、公式法、因式分解法)。第6节再次通过几个问题情境加强一元二次方程的应用.回顾与思考:问题串的形式。形成结构体系。2020/6/2614《课程标准》明确要求加强学生估算意识和能力的培养,为此教科书设计了一节内容探索一元二次方程的近似解,按照先近似估算后精确求解的顺序呈现教学内容.具体的,在建立了一元二次方程的模型之后,基于学生的学习心理规律,学生自然会产生探求其解的欲望,因此教科书很自然地从引入问题之一“花边有多宽”,要求学生在这具体情境中估计它的解.一方面可以促进学生对方程解的理解,发展学生估算意识和能力,另一方面,又为方程精确解的研究作了铺垫.学生是不可能满足于所获得的近似解的,必然产生精确求解的内在欲望,自然引入方程的精确求解方法.直接开平方法、配方法、公式法、因式分解法等,根据难度递增,方法选择依次递进。2020/6/2615鉴于有些中考试题的考查和修改后的课程标准,形成关于一元二次方程的完整结构体系,有必要再补充判别式和韦达定理的内容。放在回顾与思考之前进行为好。此外,注意方程模型、转化、类比、归纳等数学思想方法的渗透.解方程的过程就是一个沟通“未知”与“已知”的过程,其本质思想是化归,因而在方程解的探索中力图通过“未知”与“已知”、复杂问题与简单问题的转化、特殊与一般的转化等渗透转化、归纳等数学思想.如在配方法一节中,首先回忆现在所能解决的方程的类型,然后将一般的一元二次方程逐步转化为所熟悉的(mx+n)2=p(p0)的形式,直接开平方,从而得到配方法.2020/6/2616在配方基础上,又进一步将其一般化,得到公式法.在分解因式法中,注意突出降次的思路.分解因式法的思路,两个一次方程。降次思想类比一次方程研究二次方程。2020/6/2617(二)教材分析2.分析教材内容的编排与呈现方式分析编者的编写方式与意图以及如何体现《标准》的要求(内容的选取、呈现的方式、习题选择搭配等)。例如.课本习题的编写意图可以从以下几个方面进行研究:巩固知识形成技能;课本知识的补充与深化:为后面学习做好铺垫;培养学生某种能力,等.2020/6/2618(二)教材分析3.分析教材知识与例习题的功能与作用(1)分清教材中知识的涵义;(概念的内涵与外延,公式、图式、定理、法则成立的条件和适应的范围等);(2)弄清教材中知识的内在的联系和来龙去脉,分析教材的基本结构。基本结构是由数学的知识结构(基本概念、法则及其联系等)和观念系统(原理、观念、思想、方法、规律等)组成的。2020/6/2619(二)教材分析(3)分析教材中例、习题的作用与搭配方式,分析例、习题的类型和层次,挖掘例、习题的潜在价值与功能,提炼隐藏其中的数学思想方法与解题规律。2020/6/2620分析例、习题时,要了解各题的难易和繁简,根据教学要求和题目的不同特点,以及学生的接受能力等情况,可以考虑采用口答、板演、复习提问、书面作业、课后思考等方式。例如,对数学教材中例、习题的研究内容为:结构研究、解法研究、变式研究、深化研究等2020/6/2621例题结构研究:例题的条件是什么?结论是什么?条件对结论起何作用?在此条件下还会得出哪些结论?改变条件结论如何?改变结论条件将有何变化?条件与结论有何特征?它与哪些教材中哪些习题有联系?与哪些知识有联系?2020/6/2622例题解法研究:那些例题有多种解法?各个解法的关键是什么?不同解法的优劣如何?解法是否具有典型性和代表性?能否用于解决其它问题或类似问题?2020/6/2623北师大版教材中的习题分为随堂练习、习题、章复习题、总复习题四种类型,各种类型的习题是按照不同教学要求编排的。各个课节的“随堂练习”,主要是围绕新课内容,突出简明新概念的实质和直接应用新知识进行解答的基础题。可随堂让学生练习,以巩固基础知识和基本技能。课节(单元)后的“习题”,是为巩固该课节(单元)的知识学习、技能训练、方法应用而编排的。它比“随堂练习”要求略高,使学生在解题过程中,加深对知识、技能、方法的理解和掌握。它可以供学生课外练习或教师布置作业时选用。2020/6/2624复习题和总复习题,安排在一章或一本书教完之后,知识技能、数学理解、问题解决等栏目,是一些较深的、涉及知识面较广、富于变化的综合题。复习题一般在章节教完以后,供教师挑选作为复习课(回顾与思考)例题讲解,或给学生课外练习。此类题目,可使学生巩固和深化知识,减少遗忘,并发展“三大能力”及分析问题解决问题的能力。务必让学生认真练习。2020/6/2625(三)学情分析起点能力、使能目标、支持性条件等。即一般的认知前提、思维特征的分析与本班学生能力起点分析、性格、班风等。优势与不足。学生学习的现有状况是数学教学活动的起点。学生在探究活动中需要一定的活动经验。了解学生的思维水平、认知特征、对数学的价值倾向、学生在数学活动中在某方面的个体差异等,都是设计合理的数学教学的基本前提。2020/6/2626例如,一元二次方程应用问题中,建立一元二次方程时,需要理解问题的现实背景、具备一定的文字阅读能力、现实生活经验和代数化能力。预见到学生可能会有哪些思路、想法,又可能会遇到些什么困难,学生之间有什么差异,只有了解这些才能设计合理的教学活动。2020/6/2627(四)中考分析近几年中考对本章内容考查分析,目的是通过对近几年中考试题的分析研究,便于了解与掌握本章内容的教学重点和标高。虽然中考数学题每年花样百出,但每年中考题,都有一些常规性内容、模式化的题型、热点和必考点,需要及时渗透、深化理解。千变万变母题不变(万变不离其宗!)2020/6/2628(四)中考分析主要研究近几年中考对该章知识的考查内容、方式和程度.中考试题考查了那些基础知识和基本技能?是以何种方式进行考查的?考查的程度与所占的比例为多少?中考试题是怎样体现初中数学课程标准和考纲要求的?试题如何考查学生数学能力与学习潜能?试题对本单元教学有何启示?等。2020/6/2629案例:判别式和Vita定理了解根与系数关系,能用判别式判别一元二次方程根的情况。人教版:9上22章公式法之后,讲了判别式,并进行了归纳。观察与猜想栏目介绍了韦达定理。北师大版:在推导求根公式时加了一个附加条件b2-4ac没有其他学习内容。韦达定理在复习题中设计了一个填空(探究猜想)题。华师大版:阅读材料介绍判别式。22。3实践与探索中有一个问题探索,介绍韦大定理,重在经历发现的过程体验和自主学习能力的培养。并非从知识性角度来介绍。2020/6/2630考题1(06兰州14题)已知x1、x2是方程2x2-x-7=0的两根,则x12+x22的值是。考题2(08兰州22题)已知关于x的一元二次方程x2-2x-a=0.(1)如果此方程有两个不相等的实数根,求a的取值范围;(2)如果此方程的两个实数根为x1,x2且满足,求a的值.考题3(09兰州19.)阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=-,x1·x2=.根据该材料填空:已知x1、x2是方程x2+6x+3=0的两实数根,则+的值为.321121xxbaca21xx12xx2020/6/2631考题4兰州20122020/6/2632(五)教学目标的确定教学目标就是师生所预期达到的学习效果和标准,是教学的根本指向和核心任务,也是教学的关键.(布卢姆(B.bloom))“学生学完这些数学能够做什么”,即学生学习这些内容的价值,这就是教学目标。教学目标定位不同,将直接影响教学设计和教学效果。根据教材的内容确立本章教学目标、选择教学任务,指出本章的教学重点,划分为几个课时?明确各个课时相互之间的关系与作用。2020/6/2633(五)教学目标的确定教学目标必须通过具体的教学任务来实现的。分析任务的目的在于明确学习主题有哪些