1/112019年4月13日初中数学试卷(初三-应用题)一、综合题(共8题;共85分)1.(10分)(2015•深圳)下表为深圳市居民每月用水收费标准,(单位:元/m3).用水量单价x≤22a剩余部分a+1.1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?2.(10分)春平中学要为学校科技活动小组提供实验器材,计划购买A型,B型两种型号的放大镜,若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元?(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?3.(10分)某商场计划购进、两种型号的手机,已知每部型号手机的进价比每部型号手机的多500元,每部型号手机的售价是2500元,每部型号手机的售价是2100元.(1)若商场用50000元共购进型号手机10部,型号手机20部.求、两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购、两种型号的手机共40部,且型号手机的数量不少于型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?2/114.(10分)某童装店在服装销售中发现:进货价每件元,销售价每件元的某童装每天可售出件.为了迎接“六一儿童节”,童装店决定采取适当的促销措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价元,那么每天就可多售出件.(1)如果童装店想每天销售这种童装盈利元,同时又要使顾客得到更多的实惠,那么每件童装应降价多少元?(2)每件童装降价多少元时,童装店每天可获得最大利润?最大利润是多少元?5.(10分)空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.6.(10分)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?3/117.(15分)我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A、B两种型号的电动自行车共30辆,其中每辆B型电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.(1)求A、B两种型号电动自行车的进货单价;(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.写出y与m之间的函数关系式;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?8.(10分)如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?9.(5分)随着人们生活水平的不断提高,旅游已成为人们的一种生活时尚.为开发新的旅游项目,我市对某山区进行调查,发现一瀑布.为测量它的高度,测量人员在瀑布的对面山上D点处测得瀑布顶端A点的仰角是30°,测得瀑布底端B点的俯角是10°,AB与水平面垂直.又在瀑布下的水平面测得CG=27m,GF=17.6m(注:C、G、F三点在同一直线上,CF⊥AB于点F).斜坡CD=20m,坡角∠ECD=40°.求瀑布AB的高度.(参考数据:≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)4/1110.(5分)如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B处的求救者后,又发现点B正上方点C处还有一名求救者.在消防车上点A处测得点B和点C的仰角分别是45°和65°,点A距地面2.5米,点B距地面10.5米.为救出点C处的求救者,云梯需要继续上升的高度BC约为多少米?(结果保留整数.参考数据:tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)11.(5分)(2014•遵义)如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)12.(1分)如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是________m(结果保留根号)5/11答案解析部分一、综合题1.【答案】(1)解:由题意可得:10a=23,解得:a=2.3,答:a的值为2.3;(2)解:设用户水量为x立方米,∵用水22立方米时,水费为:22×2.3=50.6<71,∴x>22,∴22×2.3+(x﹣22)×(2.3+1.1)=71,解得:x=28,答:该用户用水28立方米.【解析】【分析】(1)直接利用10a=23进而求出即可;(2)首先判断得出x>22,进而表示出总水费进而得出即可.2.【答案】(1)解:设每个A型放大镜x元,每个B型放大镜y元根据题意得解得∴每个A型放大镜20元,每个B型放大镜12元(2)解:解:设可以购买a个A型放大镜,则购买B型放大镜75-a)个根据题意得20a+12(75-a)≤1180解得a≤35∴最多可以购买35个A型放大镜.【考点】一元一次不等式的特殊解,一元一次不等式的应用,二元一次方程组的实际应用-销售问题【解析】【分析】(1)根据题中关键的已知条件:购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元,设未知数,列方程组求解即可。(2)根据买A型放大镜的数量+B型放大镜的数量=75;75个两种型号的放大镜的总费用≤1180,设未知数,列不等式求解,再取不等式的最大整数解,即可求解。3.【答案】(1)解:A型号的手机每部进价为x元,B型号的手机每部进价为y元,根据题意得解之:(2)解:设购进A型号的手机m部,则购进B型号的手机(40-m)部则:解之:∵m为正整数6/11∴m=27、28、29、30∴该商场一共有5种进货方案;②设总利润为W∴W=(2500-2000)m+(2100-1500)(40-m)=-100m+24000∵k=-100<0,∴W随m的增大而减小∴m取最小值为27时,W最大值=-2700+24000=21300元【考点】一元一次不等式组的应用,根据实际问题列一次函数表达式,一次函数的性质,二元一次方程组的实际应用-销售问题【解析】【分析】(1)根据题意可得等量关系:A型号手机额单价-B型号手机的单价=500;10部A型号手机的总价+20部B型号手机的总价=50000;列方程组求解即可。(2)①商场决定用不超过7.5万元采购、两种型号的手机共40部,且型号手机的数量不少于型号手机数量的2倍,设未知数,建立不等式组,求出其整数解即可解答;②设总利润为W,建立W关于m的函数解析式,再根据一次函数的性质,即可求解。4.【答案】(1)解:设每件童装降价x元,根据题意,得(100−60−x)(20+2x)=1050,解得:∵要使顾客得到较多的实惠,∴取x=25,答:童装店应该降价元(2)解:设每件童装降价元,可获利元,根据题意,得,化简得:∴.答:每件童装降价元童装店可获得最大利润,最大利润是元【考点】一元二次方程的实际应用-销售问题,二次函数的实际应用-销售问题【解析】【分析】(1)设每件童装降价x元,每件的利润为(100-60-x)元,销售的数量为(20+2x)件,根据单件的利润乘以销售的数量等于总利润即可列出方程,求解并检验即可;(2)设每件童装降价元,可获利元,根据单件的利润乘以销售的数量等于总利润即可建立出y与x的函数关系式,再根据所得函数的性质即可解决问题。5.【答案】(1)解:设AD=x米,则AB=米依题意得,解得x1=10,x2=90∵a=20,且x≤a∴x=90舍去∴利用旧墙AD的长为10米(2)解:设AD=x米,矩形ABCD的面积为S平方米①如果按图一方案围成矩形菜园,依题意7/11得:S=,0<x<a∵0<α<50∴x<a<50时,S随x的增大而增大当x=a时,S最大=50a﹣②如按图2方案围成矩形菜园,依题意得S=,a≤x<50+当a<25+<50时,即0<a<时,则x=25+时,S最大=(25+)2=当25+≤a,即时,S随x的增大而减小∴x=a时,S最大=综合①②,当0<a<时,﹣()=>,此时,按图2方案围成矩形菜园面积最大,最大面积为平方米当时,两种方案围成的矩形菜园面积最大值相等.∴当0<a<时,围成长和宽均为(25+)米的矩形菜园面积最大,最大面积为平方米;当时,围成长为a米,宽为(50﹣)米的矩形菜园面积最大,最大面积为()平方米【考点】一元二次方程的实际应用-几何问题,二次函数y=a(x-h)^2+k的性质,二次函数的实际应用-几何问题8/11【解析】【分析】(1)此题的等量关系为:2AB+BC=100,ABAD=450,设未知数,列方程求解即可。(2)设AD=x米,矩形ABCD的面积为S平方米,①如果按图一方案围成矩形菜园,求出s与x的函数解析式,根据0<α<50,根据二次函数的性质,可得出当x=a时,S最大;②如按图2方案围成矩形菜园,根据题意列出s与x的函数解析式,当a<25+<50时,即0<a<时,分别求出s的最大值,然后结合①②求出答案。6.【答案】(1)解:设二号施工队单独施工需要x天,依题可得解得x=60经检验,x=60是原分式方程的解∴由二号施工队单独施工,完成整个工期需要60天(2)解:由题可得(天)∴若由一、二号施工队同时进场施工,完成整个工程需要24天【考点】分式方程的实际应用【解析】【分析】(1)设二号施工队单独施工需要x天,一号队的工作效率是,二号队的工作效率是,一号队单独的工作量+两队合作的工作量=1,列出方程,求解并检验即可;(2)根据工作时间=工作总量除以工作效率即可得出一、二号施工队同时进场施工,完成整个工程需要的时间。7.【答案】(1)解:设A、B两种型号电动自行车的进货单价分别为x元、(x+500)元,由题意:=,解得:x=2500,经检验:x=2500是分式方程的解,答:A、B两种型号电动自行车的进货单价分别为2500元3000元(2)解:y=300m+500(30﹣m)=﹣200m+15000(20≤m≤30)(3)解:∵y=300m+500(30﹣m)=﹣200m+15000,∵﹣200<0,20≤m≤30,∴m=20时,y有最大值,最大值为11000元【考点】分式方程的实际应用,一次函数的实际应用【