常见视错觉现象及其原理目录不可能三角形不可能的楼梯图形--背景错觉知觉的模糊深度错觉Ouchi错觉大小恒常性错觉左氏错觉弗雷泽螺旋缪勒--莱耶错觉达尔马提亚狗“反重力”的房屋浮箱错觉立体图像黑白视觉后像填充错觉赫尔曼栅格栅格火花错觉不可能的三角形这是怎么回事?!尽管这个不可能的三角形任何一个角看起来都是合情合理的,但是当你从整体来看,你就会发现一个自相矛盾的地方:这个三角形的三条边看起来都向后退并同时朝着你偏靠。但是,不知何故,它们组成了一个不可能的结构!我们很难设想这些不同的部分是怎么构成一个看似非常真实的三维物体的!其实,造成“不可能图形”的并不是图形本身,而是你对图形的三维知觉系统,这一系统在你知觉图形的立体心理模型时强制作用。在解释一幅三维图形的时候,你的视觉系统将会自动产生这一作用。在现实生活中,我们可以构造出这个不可能三角形的物理模型,但这个模型只能从某一个角度看才是不可能的。看一看下面的这个例子!其中,在镜子中显示的才是真实的结构!在把二维平面图形知觉为你三维立体心理图形时,执行这一过程的机制会极大地影响你的视觉系统。正是在这一强制执行的机制的影响下,你的视觉系统对图形中的每一个点都赋予了深度。此外,对你的视觉系统来说,当你感觉到一个荒谬的、不和常理的或者是矛盾的图形线索时,它将坚持这些强制约束机制,而不去否认这些线索。具体来说,一幅图像的某些结构元素和你三维知觉解释系统的某些结构元素相对应。例如,一个规则就是,二维直线应该被解释成三维直线。同样的,二维的平行线应该被解释为三维的平行线。连续的直线被解释为连续的直线。在透视图像中,锐角和钝角都被解释为90°角。外面的线段被看作是外形轮廓的分界线。这一外形分界线在你定义整个心理图像的外形轮廓时起着及其重要的作用。这些规则可以被总称为“一般视觉规则”,这一规则说明,在没有相反信息的影响下,你的视觉系统总是假定你在从一个主要视角观看事物。让我们看一看这一规则是如何造成这个不可能的三角形的。上图显示的是不可能三角形的顶点。其实,这幅图像在视觉上是暧昧的。例如,折线abb'b''a''构成的一翼的分界线,而这一轮廓线的延长线又被右翼折线a''b''b'bcc所封闭。此外,还有许多其它的可能性。另一个例子可以从以上的图像中看出来。在这个情景中,信息是由所谓的“T连接”提供的。T连接就是这些折线交汇的连接点。其中两条直线是同线的,组成了“T”的顶部。T连接是深度知觉的良好的线索(但并非完全可靠。“T”的顶部通常是起封闭作用的轮廓线。“T”的茎干部续接在其后。但是,封闭是视觉系统的一种特殊的情形。局部地说,并不存在封闭的暗示线索。视觉系统直接将直线abc和a'b'c'知觉为连续的直线,而不是突然的中断。因此,折线abcc'b'a'定义出了一块连续表面的边界线。所有三个角的情况都可以这样来解释。这些强制约束机制在不同的水平上进行着,首先在局部进行,然后转到整体。当你观看一幅不可能三角形的图像时,你会首先观看局部区域,以形成一幅完整的图像。三角形的每一个顶角都产生透视,尽管三个顶角各自体现了不同角度的三角形。把三个顶角合成一个整体,就产生了一个空间不可能图形。不可能的三叉戟这是怎么回事?!在所有不可能图形中,最著名也是最有意思的当数“不可能的三叉戟”。中间尖头的轮廓最终融合进了其他两个尖头的外轮廓中。而且中间尖头的顶部低于其他两个外部的尖头。这种似是而非的观点却是颇为有力的,因为在这里面含有多种不可能事件的来源。请用手盖住图形的某些部分。如果你盖上顶上那部分,你会发现剩下的部分是可能存在的。从这个例子来看,你会解释说是前景图形是建在一个平整的由两个矩形尖头组成的平面上的。现在只看图形的下半部分。你解释说这个图形是建在由三个并排但分隔开的圆柱组成的曲面上的。当你把图形的这两部分分开看时,对于它们的形状就出现了不同的解释。而且,当你把这量部分结合在一起时,你拥有一种解释(看前景部分〕,同时你又得到另一种解释(看背景部分〕。因而图形也就违反了物体成分与背景间关系的基本特性。当你看这个图形时,你首先考虑的是它的轮廓或是等高线,由此你会试着去注意它的边界。你的视觉系统发生了混乱,因为图形的轮廓线间的关系是不明确的(被红线标出的:虽然是同一条线,但看上去却是两种解释都符合。换句话说,这个图形利用了一个事实,那就是一个圆柱由两条线组成,而一个矩形框却需要三条。这种幻觉正是建立在每两条线在一端形成一个圆柱,而每三条却在另一端形成矩形框的基础上的。这种不明确还违背了另一种基本特性,即在平面与曲面之间平面被扭动成曲面。两个突出的边缘也可以解释成是三个直角面的边缘或者说是圆柱表面的无滑动边缘。这个图形,更深的来讲,是为更深入地评价中间一个尖头给出了两种截然相反的提示。尽管这个图形揭示了一些不可能事件的来源,但你所注意的第一件事却是去计算自相矛盾论点的个数。这表明你的视觉系统通过数数来比较不同的区域。这个图形或许正是少数几个能揭示上面论点的他图形之一。而其他不可能事件的来源也许并不这么简单。与此相一致的,当“不可能的三叉戟”拥有7个,8个或以上的圆柱,那图形的不可能性就不再会这样明显了,尽管其他矛盾还依然存在。当不可能图形的不可能地带变长或变短时,你会有什么样的感觉呢?这些例子表明了你的大脑是如何建立具有象征意义的深度形象的。一些细节被用来建立一种对局部感觉的清楚的深度描绘。总的来讲,就是图形整体的一致性并不被看作是非常重要的。如果你不是一上来就注意整个图形,那你一定会去比较不同的部分,直到你意识到它是不可能的为止。当图形很长时,你可能会在某个区域里感觉它是三维的,而且它的不可能性并不是能马上被感知出来的。这是因为矛盾的线索被分的太开了。当图形为中等长度时,它很容易被看成是个三维的物体,而且会很快的感觉出它的不可能性。如果尖头特别短,那么就得在一块相同的区域里同时满足两种不同的解释。但这两种解释间并没有一致性,幻觉也就没有了。一些早期关于不可能图形的书籍和出版物把不可能图形错误地规定了成了两类:作为三维图形建立起来的是一类;其余的是另一类。不可能的三叉戟图形被归在了第二类,因为从表面上看,其不能解决的冲突是产生在前景与背景之间的。但实际上,所有不可能图形都可以看作是由某一优势地带的一些三维图形组成的。你现在看到的是由日本艺术家ShigeoFukuda在1985年创作的“不可能的三叉戟”和“消失的柱子”。在“消失的柱子”中你可以看到:在它的顶部有三个圆形的柱子,而它的底部却是有两个方形的柱子组成的。这幅幻想作品的感觉仅仅是来自于对边界的刻划。“不可能的三叉戟”的历史你在本页最开始看到的那些图形是有艺术家NormanMingo在1965年三月的MAD杂志上摘录的。MAD介绍这些图形作为MAD的poiuyt(看看你的键盘,看MAD是怎样拼这个名字的!这幅图形还有其它一些名称:“魔鬼的餐叉”、“三个U形棍”、“Widgit”、“Blivit”、“不可能的圆柱”等等。没有人知道谁最先设计了这种图形,尽管它最开始是在1964年五月和七月同时出现在几个很流行的工程学,航空学和科幻小说类出版物上的。同年,D.H.Schuster在『美国心理杂志』发表了一篇文章,第一次提出了不可能图形在心理学界的重要性。早在五十年代中期,一位MIT工程师就率先提出了这一观点,只是当时没有能够得到证实。多年以后,这一观点又被以无尽的形式和版本重新提出来。举例来说,斯坦福的心理学家RogerShepard聪明地运用了这个观点作为一种不可能像的基础。瑞典艺术家OscarReutersv?rd掌握了这些图形后,创作出了上千幅不尽相同的这类作品。不可能的楼梯在这个楼梯中,你能分清哪一个是最高或最低的楼梯吗?当你沿顺时针走的时候,会发生什么呢?如果是逆时针,情况会怎么样呢?这是怎么回事?!这是一个由遗传学家LionelPenrose设计的不可能的自然模型。同时它给M.C.Escher创作著名的画上升还是下降?以最初的灵感。这个模型在右边被分割,但是你感觉不到这种分裂,因为你的视觉系统M.C.Escher假定它是一个从整体上观察的模型,因此你假定楼梯是结合在一起的。虽然这个楼梯在概念上是不可能,但是这并干扰你对它的感知。实际上,这种情况对大多数人来说是不清楚的。虽然M.C.Escher、Lionel和RogerPenrose使这个不可能楼梯图形很有名,但是它是多年前瑞典的艺术家OscarReutersvard独立发现的。不过Penroses和Escher并不知道他的发现。自从那以来,出现了无数的RogerPenrose和OscarReutersvard发现的不可能楼梯模型的变式。在20世纪60年代,斯坦福大学心理系家RogerShepard制作了一个关于这个不可能楼梯的听觉版本。图形--背景错觉在上图中,你看见了什么?你看见的是两个头,还是一个花瓶的轮廓?即使这个图形在视网膜上是固定不动,你对它的感觉仍然是在两种可能图形中动摇。同时感觉到两种有意义的图形是很困难的!这是怎么回事?!这个Rubin花瓶/人脸图形是一个主体/背景可互换的两可图画。这是由于它既可以看成是白色背景上两张对视的黑色的脸,也可以理解为黑色背景上白色的花瓶。在这幅主体/背景可互换的图形里,线条有两种外形。轮廓的外形取决于线条被认为图画的哪一方面--背景还是前景。这是非常重要的,因为视觉系统是依据物体的轮廓来对其进行编码的。在图画中,相邻、相似和同属一类的部分倾向与结合在一起。你对轮廓外形注意的转变会导致图画的翻转。观察者的知觉状态和个人的偏好也会有所影响。对轮廓或是外形的偏好会导致对某一方面的加强。对于同一幅图画,一些人偏向与看做花瓶,一些人则更容易将其看成是脸庞。无疑,大脑皮层参与了这一过程。因为你在大脑里储存了关于花瓶和脸的侧面的信息。你的大脑能够用外部的事物来解释你眼中看到的图案。要做到这一点,你的视觉系统必须能够将物体从它的背景中区分出来。在大多数的情况下,这是非常容易的。但是在某些时候,当有伪装存在时,事情就变得困难了。这个两可图形是非常重要的,因为它表明了知觉并不是仅仅由视网膜上的图象决定的。当你观察时自发产生的图象的翻转有力地证明了灵敏的知觉过程是一个动态的过程。这个过程指出我们大脑组织视觉信息的方式是非常重要的。Rubin花瓶/人脸两可错觉的起源1915年,丹麦心理学家EdgarRubin使得这一“花瓶/人脸”的两可图形大扬其名,但追溯这一两可图形的家谱却远早于1915年。我们可以在18世纪法国的印刷品中找到例证,那些印刷品中的肖像画不仅描绘了通常自然状态下的花瓶,而且两个侧面像是不相同的,每个侧面像代表了一个特定的人。上面的那幅图形是斯坦福大学的心理学家RogerShepard所绘制。在这幅图形中,你可能看到的是两个女人的剖面图,也可能是一张烛台后模糊不清的脸孔。在此处,通常人们更多的看到的是一张脸而非两张脸。荷兰画家M.C.Escher因其擅长画意义暧昧的图形/两可背景作品而闻名于世。在本网页的错觉艺术馆部分将重点介绍他的作品。知觉的模糊在这个插图中,你看见的是一个老妇人还是一个年轻的少女?她们都存在在于插图中,但你不可能同时看见老妇人和少女。一旦你知觉到这两种图形轮廓,看一看你是否能够在这两种图形轮廓之间来回转换。这是怎么回事?!造成这种“可逆图形”的原因是由于大脑对同一静止图像赋予了不同意义的解释。你对每一种图形的知觉总是保持稳定,直到你的注意力转移到了别的区域或轮廓上去。某些区域或轮廓趋向于提供一种知觉线索,另外一些则支持另一种知觉。如果这一图形中的某些轮廓线所表达的意义不是非常暧昧的话,你的知觉就不会产生这一图形与背景的转换。当图中少女的脸部轮廓变成了老妇人的鼻梁的轮廓时,脸部的其它部分也就随之发生相应的改变。例如,当某一轮廓线被知觉系统暂时知觉为鼻梁时,那么这一轮廓线之下的轮廓线就会被知觉为嘴巴,之下的轮廓线就会被知觉为眼睛。这些局部的轮廓线的感知觉彼此联系,组成了一个稳定的知觉形象。对整体和局部的知觉将相应的发生联系,最后对图形产生具有