初中数学试卷第1页,共4页2017年湖北省天门市中考数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共30.0分)1.如果向北走6步记作+6,那么向南走8步记作()A.+8步B.-8步C.+14步D.-2步2.北京时间5月27日,蛟龙号载人潜水器在太平洋马里亚纳海沟作业区开展了本航段第3次下潜,最大下潜深度突破6500米,数6500用科学记数法表示为()A.65×102B.6.5×102C.6.5×103D.6.5×1043.如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()A.25°B.35°C.45°D.50°4.如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是()A.传B.统C.文D.化5.下列运算正确的是()A.(π-3)0=1B.√9=±3C.2-1=-2D.(-a2)3=a66.关于一组数据:1,5,6,3,5,下列说法错误的是()A.平均数是4B.众数是5C.中位数是6D.方差是3.27.一个扇形的弧长是10πcm,面积是60πcm2,则此扇形的圆心角的度数是()A.300°B.150°C.120°D.75°8.若α、β为方程2x2-5x-1=0的两个实数根,则2α2+3αβ+5β的值为()A.-13B.12C.14D.159.如图,P(m,m)是反比例函数y=9𝑥在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为()A.92B.3√3C.9+12√34D.9+3√3210.如图,矩形ABCD中,AE⊥BD于点E,CF平分∠BCD,交EA的延长线于点F,且BC=4,CD=2,给出下列结论:①∠BAE=∠CAD;③AE=45√5;④AF=2√5,②∠DBC=30°;其中正确结论的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,共18.0分)11.已知2a-3b=7,则8+6b-4a=______.12.“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需______元.初中数学试卷第2页,共4页13.飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=60t-32t2,则飞机着陆后滑行的最长时间为______秒.14.为加强防汛工作,某市对一拦水坝进行加固,如图,加固前拦水坝的横断面是梯形ABCD.已知迎水坡面AB=12米,背水坡面CD=12√3米,∠B=60°,加固后拦水坝的横断面为梯形ABED,tanE=313√3,则CE的长为______米.15.有5张看上去无差别的卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是______.16.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(-1,1),B(0,-2),C(1,0),点P(0,2)绕点A旋转180°得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2017的坐标为______.三、解答题(本大题共9小题,共72.0分)17.化简:5𝑎+3𝑏𝑎2−𝑏2-2𝑎𝑎2−𝑏2.18.解不等式组{5𝑥+1>3(𝑥−1)12𝑥−1≤7−32𝑥,并把它的解集在数轴上表示出来.19.如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.初中数学试卷第3页,共4页20.近几年,随着电子商务的快速发展,“电商包裹件”占“快递件”总量的比例逐年增长,根据企业财报,某网站得到如下统计表:年份2014201520162017(预计)快递件总量(亿件)140207310450电商包裹件(亿件)98153235351(1)请选择适当的统计图,描述2014-2017年“电商包裹件”占当年“快递件”总量的百分比(精确到1%);(2)若2018年“快递件”总量将达到675亿件,请估计其中“电商包裹件”约为多少亿件?21.如图,AB为⊙O的直径,C为⊙O上一点,AD与过点C的切线互相垂直,垂足为点D,AD交⊙O于点E,连接CE,CB.(1)求证:CE=CB;(2)若AC=2√5,CE=√5,求AE的长.22.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?23.已知关于x的一元二次方程x2-(m+1)x+12(m2+1)=0有实数根.(1)求m的值;(2)先作y=x2-(m+1)x+12(m2+1)的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n2-4n初中数学试卷第4页,共4页的最大值和最小值.24.在Rt△ABC中,∠ACB=90°,点D与点B在AC同侧,∠DAC>∠BAC,且DA=DC,过点B作BE∥DA交DC于点E,M为AB的中点,连接MD,ME.(1)如图1,当∠ADC=90°时,线段MD与ME的数量关系是______;(2)如图2,当∠ADC=60°时,试探究线段MD与ME的数量关系,并证明你的结论;(3)如图3,当∠ADC=α时,求𝑀𝐸𝑀𝐷的值.25.如图,在平面直角坐标系中,四边形ABCD的边AD在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B两点的直线l:y=-2x-10向右平移,平移后的直线与x轴交于点E,与直线BC交于点F,设AE的长为t(t≥0).(1)四边形ABCD的面积为______;(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请直接写出S关于t的函数解析式;(3)当t=2时,直线EF上有一动点,作PM⊥直线BC于点M,交x轴于点N,将△PMF沿直线EF折叠得到△PTF,探究:是否存在点P,使点T恰好落在坐标轴上?若存在,请求出点P的坐标;若不存在,请说明理由.