1博弈论与经济学思维兰州大学管理学院贾明琪2一、介绍博弈论(一)概念,什么是博弈论1.概念:博弈论GameTheory,又称对策论,是使用严谨的数学模型研究冲突对抗条件下最优决策问题的理论,是研究竞争的逻辑和规律的数学分支。简单地说,博弈论是研究决策主体在给定信息结构下如何决策以最大化自己的效用,以及不同决策主体之间决策的均衡。3张维迎的定义“博弈论是研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题的”也就是说,当一个主体,好比说一个人或一个企业的选择受到其他人、其他企业选择的影响,而且反过来影响到其他人、其他企业选择时的决策问题和均衡问题。所以在这个意义上说,博弃论又称为“对策论”.4博弈论(gametheory)是由美国数学家冯·诺依曼(Von.Neumann)和经济学家摩根斯坦(Morgenstern)于1944年创立的带有方法论性质的学科,它被广泛应用于经济学、人工智能、生物学、火箭工程技术、军事及政治科学等。1994年,三位博弈论专家即数学家纳什(Nash,他的故事被好莱坞拍成电影《美丽心灵》,该影片获得了2002年奥斯卡金像奖的四项大奖)、经济学家海萨尼(Harsanyi)和泽尔滕(Selten)因在博弈论及其在经济学中的应用研究上所作出巨大贡献而获得诺贝尔经济学奖。51996年,两位将博弈论应用于不对称信息下机制设计的经济学家莫里斯(Mirrlees)和维克里(Vickrey)、以及2001年三位经济学家阿克洛夫(Akerlof)、斯蒂格利茨(Stiglitz)和斯宾塞(Spence)因运用博弈论研究信息经济学所取得的成就而成为这两个年度的诺贝尔经济学奖得主。专家预计,近几年还会有更多的博弈论专家可能获得诺贝尔经济学奖。6为什么博弈论在经济学领域会产生如此大的影响呢?这是因为博弈论从一个独特的视角帮助我们更加深刻地理解和把握经济现象,并指导更加有效的经济政策制订。7博弈论是一门十分有趣但理论上又是十分艰深的学问,我今天打算用一些大家能够凭直观或简单分析就能把握的例子为大家介绍博弈论的基本概念及应用,以引起大家对这门目前已成为热门科学的兴趣和获得初步的了解。这些例子也是我们在日常生活中经常所遇到的问题或观察到的现象,通过博弈论,我们能够更加深刻地理解它们。8囚犯困境(Prisoner`sdilemma)囚犯困境是指这样一种情形,此时两个人(或厂商)合作要比不合作好,但是每个人都觉得不合作符合他的利益,因此每个人的状况都要坏于如果他们合作时的境况。(一)什么是博弈论:从“囚徒困境”谈起9囚犯困境(PrisonDilemma)是博弈论的非零和博弈中具代表性的例子,反映个人最佳选择并非团体最佳选择。虽然困境本身只属模型性质,但现实中的价格竞争、环境保护等方面,也会频繁出现类似情况。单次发生的囚徒困境,和多次重复的囚徒困境结果不会一样。在重复的囚徒困境中,博弈被反复地进行。因而每个参与者都有机会去“惩罚”另一个参与者前一回合的不合作行为。这时,合作可能会作为均衡的结果出现。欺骗的动机这时可能被受到惩罚的威胁所克服,从而可能导向一个较好的、合作的结果。作为反复接近无限的数量,纳什均衡趋向于帕累托最优。囚犯困境的主旨为,囚犯们虽然彼此合作,坚不吐实,可为全体带来最佳利益(无罪开释),但在资讯不明的情况下,因为出卖同伙可为自己带来利益(缩短刑期),也因为同伙把自己招出来可为他带来利益,因此彼此出卖虽违反最佳共同利益,反而是自己最大利益所在。但实际上,执法机构不可能设立如此情境来诱使所有囚犯招供,因为囚犯们必须考虑刑期以外之因素(出卖同伙会受到报复等),而无法完全以执法者所设立之利益(刑期)作考量。10经典的囚徒困境1950年,由就职於兰德公司的梅里尔·弗勒德(MerrillFlood)和梅尔文·德雷希尔(MelvinDresher)拟定出相关困境的理论,後来由顾问艾伯特·塔克(AlbertTucker)以囚徒方式阐述,并命名为「囚徒困境」。经典的囚徒困境如下:111.囚徒困境两个小偷甲和乙联手作案,私入民宅被警方逮住但未获证据。警方将两人分别置于两间房间分开审讯,政策是若一人招供但另一人未招,则招者立即被释放,未招者判入狱10年;若二人都招则两人各判刑8年;若两人都不招则未获证据但因私入民宅各拘留1年。(一)什么是博弈论:从“囚徒困境”谈起12表1囚徒困境博弈乙招不招招甲不招(问题1:甲、乙如何选择?)-8,-80,-10-10,0-1,-113关于案例,显然最好的策略是双方都抵赖,结果是大家都只被判1年。但是由于两人处于隔离的情况,首先应该是从心理学的角度来看,当事双方都会怀疑对方会出卖自己以求自保、其次才是亚当·斯密的理论,假设每个人都是“理性的经济人”,都会从利己的目的出发进行选择。这两个人都会有这样一个盘算过程:假如他坦白,我抵赖,得坐10年监狱,坦白最多才8年;他要是抵赖,我招,就可以被释放,而他会坐10年牢。综合以上几种情况考虑,不管他坦白与否,对我而言都是坦白了划算。两个人都会动这样的脑筋,最终,两个人都选择了坦白,结果都被判8年刑期。14基于经济学中Rationalagent的前提假设,两个囚犯符合自己利益的选择是坦白招供,原本对双方都有利的策略不招供从而均被释放就不会出现。这样两人都选择坦白的策略以及因此被判8年的结局,纳什均衡”首先对亚当·斯密的“看不见的手”的原理提出挑战:按照斯密的理论,在市场经济中,每一个人都从利己的目的出发,而最终全社会达到利他的效果。但是我们可以从“纳什均衡”中引出“看不见的手”原理的一个悖论:从利己目的出发,结果损人不利己,既不利己也不利他。15尽管甲不知乙是否招供,但他认为自己选“招”最好,因而甲会选择“招”,乙也同样会选择“招”,结果各判8年;但若两人都不招,结果是两人只被判1年,但这种结果是不会出现的。我们可以运用“剔除劣战略”的方法来获得这样的结果。16甲或乙可以作出的选择被称为“战略”,如“招”或“不招”都是战略。17对甲来说,尽管他不知道乙是选择了“招”还是“不招”,他发现他自己选择“招”都是比选择“不招”为好的。因此,“不招”是相对于“招”的劣战略,他不会选择劣战略。所以,甲会选择“招”。同样,根据对称性,乙也会选择“招”,结果是甲乙两人都“招”。18甲和乙是参与博弈的人,称为“局中人”。表1中每一个小方格内的数字被称为局中人的支付,其中左边的数字代表甲的支付,右边的是乙的支付。表1中的双变量矩阵称为博弈支付矩阵。局中人所选择的战略构成的组合(招,招)被称为博弈均衡。这个组合中前后两个战略分别表示甲和乙所选择的战略。19表1囚徒困境博弈乙招不招招甲不招-8,-80,-10-10,0-1,-120甲和乙都不会选择劣战略“不招”,称为“剔除劣战略的占优战略均衡”。其中“招”是占优于(优于)“不招”的占优战略。21囚徒困境说明了什么在(坦白、坦白)这个组合中,A和B都不能通过单方面的改变行动增加自己的收益,于是谁也没有动力游离这个组合,因此这个组合是纳什均衡,也叫非合作均衡。囚徒困境反映了个人理性和集体理性的矛盾。如果A和B都选择抵赖,各判刑1年,显然比都选择坦白各判刑8年好得多。当然,A和B可以在被警察抓到之前订立一个攻守同盟,但是这可能不会有用,因为它不构成纳什均衡,没有人有积极性遵守这个协定,显然最好的策略是双方都抵赖.22囚徒困境的意义“囚徒的两难选择”有着广泛而深刻的意义。个人理性与集体理性的冲突,各人追求利己行为而导致的最终结局是一个“纳什均衡”,也是对所有人都不利的结局。他们两人都是在坦白与抵赖策略上首先想到自己,这样他们必然要服长的刑期。只有当他们都首先替对方着想时,或者相互合谋(串供)时,才可以得到最短时间的监禁的结果。23对经典经济学的冲击“纳什均衡”首先对亚当·斯密的“看不见的手”的原理提出挑战。按照斯密的理论,在市场经济中,每一个人都从利己的目的出发,而最终全社会达到利他的效果。《国富论》:“通过追求(个人的)自身利益,他常常会比其实际上想做的那样更有效地促进社会利益。”从“纳什均衡”我们引出了“看不见的手”的原理的一个悖论:从利己目的出发,结果损人不利己,既不利己也不利他。两个囚徒的命运就是如此。从这个意义上说,“纳什均衡”提出的悖论实际上动摇了西方经济学的基石。24怎么看待这个问题二者是对立统一的,范围不同,在非竞争环境中效率会受到损失;在完全竞争条件下,边际利润等于边际成本,达到效率25NASH均衡条件下的行为规则合作是有利的“利己策略”。但它必须符合以下黄金律:按照你愿意别人对你的方式来对别人,但只有他们也按同样方式行事才行。所谓“己所不欲勿施于人”。但前提是人所不欲勿施于我。26Nashequilibrium纳什均衡,Nashequilibrium,又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名。约翰·纳什1948年作为年轻数学博士生进入普林斯顿大学。其研究成果见于题为《非合作博弈》(1950)的博士论文。该博士论文导致了《n人博弈中的均衡点》(1950)和题为《非合作博弈》(1951)两篇论文的发表。纳什在上述论文中,介绍了合作博弈与非合作博弈的区别。他对非合作博弈的最重要贡献是阐明了包含任意人数局中人和任意偏好的一种通用解概念,也就是不限于两人零和博弈。该解概念后来被称为纳什均衡。27纳什均衡定义假设有n个局中人参与博弈,给定其他人策略的条件下,每个局中人选择自己的最优策略(个人最优策略可能依赖于也可能不依赖于他人的战略),从而使自己利益最大化。所有局中人策略构成一个策略组合(StrategyProfile)。纳什均衡指的是这样一种战略组合,这种策略组合由所有参与人最优策略组成。即在给定别人策略的情况下,没有人有足够理由打破这种均衡。纳什均衡,从实质上说,是一种非合作博弈状态。28哲学思考如果参与人事前达成一个协议,在不存在外部强制的情况下,每个人都有积极性遵守这个协议,这个协议就是纳什均衡。29Bargaining问题的普遍性几乎所有的交易都涉及讨价还价:买卖双方之间;雇员与顾主之间;合伙人之间;竞争企业之间夫妻之间;政治领域之间;中央政府与地方政府;国家之间;30所有讨价还价的共同之处达成某种协议是当事人的共同利益,但他们之间在究竟达成哪一个协议的问题上存在利益冲突;协议的多重行可能阻止任何协议的出现;典型的“合作与竞争”问题;合作意味着存在着帕累托改进,但不同的当事人偏好不同的帕累托状态。不同与集体选择(唯一均衡)和其他多重均衡;不是零和博弈。31寻找纳什均衡C1C2C3R1R2R3100,1000,050,10150,01,160,00,3000,0200,20032纳什均衡:举例广告博弈纳什均衡:(做广告,做广告)战略做广告不做广告做广告4,415,1不做广告1,1510,10企业1企业233利用纳什均衡寻租考虑股票市场融资的例子:设想企业价值是100,现在发行的流通股为100股,每股价值1元。现在假定经理想筹集100元,投资价值只有50元。有人买新股吗?假定每一股配4股,价格为0.25元。如果股东不接受配股:原来一股1元的价值就变成0.3元(=150/500);如果接受配股,他持有的股票的价值是1.5元;因为配股的成本是1元,所以他的最优选择是接受配股。34所有权配置与等级结构考虑团队生产:让其中的一个人变成所有者工作偷懒工作偷懒6,62,20,88,035纳什均衡与学习过程R2R1NEq1q236双寡头竞争:Cournot博弈两个企业同时选择产量,价格由市场决定;假定需求函数为其中为企业1的产量,为企业2的产量假定成本函数为:那么,利润函数为:)()(21qqaQP1q2qiiiqcqC)()()()()(212222211111cqqaqcqQPqcqqaqcqQPq37双寡头竞争(续)企业最大化利润的一阶条件为:纳什均衡产量:纳什