宁波大学硕士学位论文象山铜瓦门大桥非线性稳定分析与研究姓名:计春笑申请学位级别:硕士专业:工程力学指导教师:李辉20070420I:::::XXXXXANSYS9.010.930.592X3X4X5X,X,’sstudyingisless,andmostoftheconclusionsgetfromlinearelasticitystaticanalysismethod.ThispaperusessoftwareANSYS9.0totakelinearelasticity,geometricnonlinear,geometricandmaterialnonlinearstaticanalysismethodstoanalyzeandstudythearchstabilityandtheinfluencingfactorsoftheTongwamenbridge,whichinoperationalphase,getthefollowingresults:1)FortheTongwamenBridge,theratioofarchstabilitycoefficientsingeometricnonlinearandlinearelasticitystaticanalysismethodis0.93,whileingeometricandmaterialnonlinearstaticanalysismethod,theratiois0.59.Therefore,weshouldpaymoreattentiontotheeffectofthegeometricandmaterialnonlinearstaticanalysisinthedesignofbridge;2)TheinfluenceaboutslopingangleofarchribsisrelativelyobvioustothestabilityoftheTongwamenBridge.Thebridgeisn’tstablewhentheslopingangleofarchribsislargeenough.Inpractice,weshouldthinkcarefullytoenhancethebridge’sstabilitywithX-rib’sinclination;3)TheinfluenceaboutstiffnessofthebridgedecksystemisrelativelyobvioustothestabilityoftheTongwamenBridgeatcertainrange.Thedifferenceoftheinfluencerangesbetweenlinearelasticitystaticanalysismethodandgeometricandmaterialnonlinearstaticanalysismethodareobviously.Theeffectofthemethod,whichenhancingthebridge’sstabilitywithstiffnessofbridgedecksysteminpracticeisn’tobvious;4)TheinfluenceaboutarrangementoflateralbracesisobvioustothestabilityoftheTongwamenBridge.Inpractice,wecanenhancethestabilityofarchbridgebychangingthebracesarrangement,buttakingX-ribtoenhancethebridge’sstabilityisn’teffectivewhenthestiffnessoflateralconnectingisbigenough;5)Theinfluenceaboutlateralrigidityofthearchbridgeislittletothe(CFST)X-ribarchStabilityAnalysis[3][3][7][8]=160m1996L=270m1998L=238m2002L=360m5-4L=420m1.3[3][11]Chatterjee(1948)[9][57][1]A.S.NazmyA.M.A.Del-Ghaffar[15][18][16][42][33]UL:[39]XX1.0-2.0X°3-°15°10[5][32]X°0-°10[39]X°0-°5.117XX[19][40]1/41/4[30][43]1.°0°5.2°5°5.7°8°5.8°9°5.9°10°03.4.K5.010101×⋅Νm210104×⋅Νm210101.20×⋅Νm210102.40×⋅Νm210109.68×⋅Νm2[13][39]2.22.2.1[][][]σKKKo+=2-1[][]eeooKK∑=[][]eeKK∑=σσ[]eoK-[]oK-[]eKσ-[]σK-[]K-[][](){}{}PuKKo=+σ2-2{}[][]{}[][]{}•−−+=+=PKKPKKuooλσσ11)()(2-3{}P{}{}•=PPλ2-4λ{}•Pλλ[]σK[][]•=σσλKK2-5{}•GK{}•P{}[][](){}•−•+=PKKuoλλσ12-6[][]•+σλKKo[][]0=+•σλKKo2-7{}uλkλ{}{}*kkPPλ=2-8:()iniPuuuf=Λ,,21(2-9)(2-9)[]{}{}PuKT∆=∆(2-10)[]TK{}P∆(2-10)a)b)c)2.2.2.1[][][](){}[]{}PuKuKKKTLo∆=∆=∆++σ2-11[][][][]∫=dVBDBKoToo[]{}[]{}dVBdudKTLσσ∫=[][][][][][][][][][]()∫++=dVBDBBDBBDBKoTLLTLLToL{}[]{}{}{}ooDσεεσ+−=)([]oK[]σK[]LK[]TKP∆[]oB[]LB{}u[]D{}{}ooσε2.2.2.2[][](){}[]{}PuKuKKTo∆=∆=∆+''σ2-12[][][]{}[][]∫−=dVBDBKKoTooo)('ε[]{}[]{}[]{}{}(){}()[]{}dVBddVDBdudKTLooTLσσεεεσ∫∫=+−='{}()[]εD2-112-12[]LK{}[]εD[]D[][][](){}[]{}PuKuKKKTLo∆=∆=∆++'''σ2-13[][][]{}()[][]∫−=dVBDBKKoToooε'[]{}[]{}[]{}{}(){}()[]{}dVBddVDBdudKTLooTLσσεεεσ∫∫=+−='[][][]{}()[][][]{}()[][][]{}()[][]()∫++−=dVBDBBDBBDBKKoTLLTLLToLLεεε'[]'oK[]'σK[]'LK2.2.2.412.2()()(iiRP−)[]{})()()1()(jijijijTiRPuK−=∆+2-14{})1()()1(++∆+=jijijiuuu2-15[])(jTiKij{})1(+∆jiui)1(+j)()(,jijiRPij)(jiu)1(+jiuij)1(+j()∑=−−+=njjijiiiRPPP112-16∑=−∆+=njjiiiuuu112-17{}d1d2.22[]0det=TcnK2-18[]TKcnn=0()••LTn=1()••LU[]TK[]TK=[][]UDUT⋅⋅2-19[]TK=[][]UUT⋅2-20[]U1[]U[]D2-19[]TK[][][]∏===miiiTDDK1detdet2-212-19[][]()[]212detdet∏===miiiTUUK2-22[]TK[8]2.3°4C8°28C8.1200Pa292m238m10m213m+2410m()+213m1%3000m30.35m1.5%238m49.35m1/4.82211.5