2013年高考数学(理)二轮复习 第一阶段 专题二 第三节 平面向量

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第一阶段专题二知识载体能力形成创新意识配套课时作业考点一考点二考点三第三节返回返回返回返回1.掌握两个定理(1)向量共线定理:向量a(a≠0)与b共线当且仅当存在唯一一个实数λ,使b=λa.(2)平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2,其中e1,e2是一组基底.2.熟记平面向量的两个充要条件若a=(x1,y1),b=(x2,y2),则:(1)a∥b⇔a=λb(λ≠0)⇔x1y2-x2y1=0.(2)a⊥b⇔a·b=0⇔x1x2+y1y2=0.返回3.活用平面向量的三个性质(1)若a=(x,y),则|a|=a·a=x2+y2.(2)若A(x1,y1),B(x2,y2),则|AB|=x2-x12+y2-y12.(3)若a=(x1,y1),b=(x2,y2),θ为a与b的夹角,则cosθ=a·b|a||b|=x1x2+y1y2x21+y21x22+y22.返回返回[考情分析]平面向量的概念及线性运算在近几年高考中时常以选择题、填空题的形式出现,有时解答题的题设条件也以向量的形式给出,考查线性运算的运算法则及其几何意义以及两个向量共线的充要条件、向量的坐标运算等,具有考查形式灵活,题材新颖,解法多样等特点.返回[例1](2012·海淀模拟)如图,正方形ABCD中,点E是DC的中点,点F是BC的一个三等分点,那么EF=()A.12AB-13ADB.14AB+12ADC.13AB+12DAD.12AB-23AD返回[思路点拨]利用三角形法则和共线向量定理求解.[解析]在△CEF中,有EF=EC+CF,因为点E为DC的中点,所以EC=12DC.因为点F为BC的一个三等分点,所以CF=23CB.所以EF=12DC+23CB=12AB+23DA=12AB-23AD.[答案]D返回[类题通法]平面向量的线性运算包括向量的加法、向量的减法及实数与向量的积,在解决这类问题时,经常出现的错误有:忽视向量的起点与终点,导致加法与减法混淆;错用数乘公式.对此,要注意三角形法则和平行四边形法则适用的条件,运用平行四边形法则时两个向量的起点必须重合;运用三角形法则时两个向量必须首尾相接,否则就要把向量进行平移,使之符合条件.返回解析:选依题意得,AB=DC,故AB+CD=0,即OB-OA+OD-OC=0,即有OA-OB+OC-OD=0,则a-b+c-d=0.[冲关集训]1.(2012·武汉适应性训练)已知OA=a,OB=b,OC=c,OD=d,且四边形ABCD为平行四边形,则()A.a-b+c-d=0B.a-b-c+d=0C.a+b-c-d=0D.a+b+c+d=0A返回2.(2012·四川高考)设a、b都是非零向量,下列四个条件中,使a|a|=b|b|成立的充分条件是()A.a=-bB.a∥bC.a=2bD.a∥b且|a|=|b|解析:选对于A,当a=-b时,a|a|≠b|b|;对于B,注意当a∥b时,a|a|与b|b|可能不相等;对于C,当a=2b时,a|a|=2b|2b|=b|b|;对于D,当a∥b,且|a|=|b|时,可能有a=-b,此时a|a|≠b|b|.综上所述,使a|a|=b|b|成立的充分条件是a=2b.C返回[考情分析]向量的数量积及运算律一直是高考数学的热点内容之一,对向量的数量积及运算律的考查多为选择题或填空题;另外作为工具在考查三角函数、立体几何、平面解析几何等内容时经常用到.返回[例2](2012·北京高考)已知正方形ABCD的边长为1,点E是AB边上的动点,则DE·CB的值为________;DE·DC的最大值为________.[思路点拨]建立平面直角坐标系,将向量数量积运算转化为向量的坐标运算求解.[解析]如图所示,以AB、AD所在的直线分别为x轴和y轴建立平面直角坐标系,由于正方形边长为1,故B(1,0),C(1,1),D(0,1).返回又E在AB边上,故设E(t,0)(0≤t≤1),则DE=(t,-1),CB=(0,-1).故DE·CB=1.又DC=(1,0),∴DE·DC=(t,-1)·(1,0)=t.又0≤t≤1,∴DE·DC的最大值为1.[答案]11返回[类题通法](1)准确利用两向量的夹角公式cos〈a,b〉=a·b|a||b|及向量模的公式|a|=a·a.(2)在涉及数量积时,向量运算应注意:①a·b=0,未必有a=0,或b=0;②|a·b|≤|a||b|;③a(b·c)与(a·b)c不一定相等.返回[冲关集训]3.(2012·河南三市调研)已知单位向量α,β,满足(α+2β)·(2α-β)=1,则α与β夹角的余弦值为()A.-13B.13C.12D.15解析:选记α与β的夹角为θ,则依题意得2α2-2β2+3α·β=2×12-2×12+3×1×1×cosθ=1,cosθ=13,即α与β的夹角的余弦值是13.B返回4.(2012·重庆高考)设x,y∈R,向量a=(x,1),b=(1,y),c=(2,-4),且a⊥c,b∥c,则|a+b|=()A.5B.10C.25D.10解析:选由题意可知2x-4=0,-4-2y=0,解得x=2,y=-2.故a+b=(3,-1),|a+b|=10.B返回5.已知平面向量α,β,|α|=1,|β|=2,α⊥(α-2β),则|2α+β|的值是________.解析:∵α⊥(α-2β),∴α·(α-2β)=0,∴α2-2α·β=0,∴α·β=12,∴|2α+β|2=4α2+4α·β+β2=4+2+4=10,∴|2α+β|=10.答案:10返回[考情分析]高考对本部分的考查,主要是选择题和填空题,即利用平面向量的运算去解决向量的模、向量的坐标或平面几何中的向量的线性表示等,而解答题多为向量与解析几何、三角函数、平面几何中相结合的应用问题.题目多为中低档题,一般不会出现高难度的问题.返回[例3]已知向量a=(cosα,sinα),b=(cosx,sinx),c=(sinx+2sinα,cosx+2cosα),其中0αxπ.(1)若α=π4,求函数f(x)=b·c的最小值及相应x的值;(2)若a与b的夹角为π3,且a⊥c,求tan2α的值.[思路点拨](1)应用向量的数量积公式可得f(x)的三角函数式,然后利用换元法将三角函数式转化为二次函数式,由此可解得函数的最小值及对应的x值.(2)由夹角公式及a⊥c可得关于角α的三角函数等式,通过三角恒等变换可得结果.返回[解](1)∵b=(cosx,sinx),c=(sinx+2sinα,cosx+2cosα),α=π4,∴f(x)=b·c=cosxsinx+2cosxsinα+sinxcosx+2sinxcosα=2sinxcosx+2(sinx+cosx).令t=sinx+cosx(π4xπ),则2sinxcosx=t2-1,且-1t2.则y=t2+2t-1=t+222-32,-1t2,返回∴t=-22时,ymin=-32,此时sinx+cosx=-22,即2sinx+π4=-22,∵π4xπ,∴π2x+π454π,∴x+π4=76π,∴x=11π12.∴函数f(x)的最小值为-32,相应x的值为11π12.返回(2)∵a与b的夹角为π3,∴cosπ3=a·b|a|·|b|=cosαcosx+sinαsinx=cos(x-α).∵0αxπ,∴0x-απ,∴x-α=π3.∵a⊥c,∴cosα(sinx+2sinα)+sinα(cosx+2cosα)=0,∴sin(x+α)+2sin2α=0,即sin2α+π3+2sin2α=0.∴52sin2α+32cos2α=0,∴tan2α=-35.返回[类题通法]在平面向量与三角函数的综合问题中,一方面用平面向量的语言表述三角函数中的问题,如利用向量平行、垂直的条件表述三角函数式之间的关系,利用向量模表述三角函数之间的关系等;另一方面可以利用三角函数的知识解决平面向量问题,在解决此类问题的过程中,只要根据题目的具体要求,在向量和三角函数之间建立起联系,就可以根据向量或者三角函数的知识解决问题.返回[冲关集训]6.(2012·潍坊模拟)已知向量a=(cosx,sinx),b=(2,2),a·b=85,且π4xπ2,则cosx+π4的值为()A.45B.35C.-45D.-35D解析:选因为a·b=2cosx+2sinx=2sinx+π4=85,所以sinx+π4=45.又π2x+π434π,所以cosx+π4=-35.返回7.已知向量a=sinx,34,b=(cosx,-1).(1)当a∥b时,求cos2x-sin2x的值;(2)设函数f(x)=2(a+b)·b,已知在△ABC中,内角A,B,C的对边分别为a,b,c,若a=3,b=2,sinB=63,求f(x)+4cos(2A+π6)x∈0,π3的取值范围.解:(1)∵a∥b,∴34cosx+sinx=0,∴tanx=-34.∴cos2x-sin2x=cos2x-2sinxcosxsin2x+cos2x=1-2tanx1+tan2x=85.返回(2)f(x)=2(a+b)·b=2sin2x+π4+32,由正弦定理,得asinA=bsinB,可得sinA=22,∴A=π4.∴f(x)+4cos2A+π6=2sin2x+π4-12,∵x∈0,π3,∴2x+π4∈π4,11π12.∴32-1≤f(x)+4cos(2A+π6)≤2-12.返回巧解平面向量类试题向量是既有大小又有方向的量,具有几何和代数形式的“双重性”,常作为工具来解决其他知识模块的问题.在历年高考中都会对该部分内容进行考查,解决这些问题多可利用平面向量的有关知识进行解决,基于平面向量的双重性,一般可以从两个角度进行思考,一是利用其“形”的特征,将其转化为平面几何的有关知识进行解决;二是利用其“数”的特征,通过坐标转化为代数中的有关问题进行解决.返回[典例](2011·辽宁高考)若a,b,c均为单位向量,且a·b=0,(a-c)·(b-c)≤0,则|a+b-c|的最大值为()A.2-1B.1C.2D.2[思路点拨]法一,由(a-c)·(b-c)≤0可计算出(a+b)·c的取值范围,然后展开|a+b-c|2,可求解.法二,也可引入坐标转化为代数问题或几何问题.返回[解析]法一:∵|a|=|b|=|c|=1,a·b=0,∴|a+b|2=a2+b2+2a·b=2,故|a+b|=2.展开(a-c)·(b-c)≤0,得a·b-(a+b)·c+c2≤0,即0-(a+b)·c+1≤0,整理,得(a+b)·c≥1.而|a+b-c|2=(a+b)2-2(a+b)·c+c2=3-2(a+b)·c,∵(a+b)·c≥1,∴3-2(a+b)·c≤3-2×1=1,∴|a+b-c|2≤1,即|a+b-c|≤1.返回法二:设a=(1,0),b=(0,1),c=(x,y),则x2+y2=1,a-c=(1-x,-y),b-c=(-x,1-y),则(a-c)·(b-c)=(1-x)(-x)+(-y)(1-y)=x2+y2-x-y=1-x-y≤0,即x+y≥1.又a+b-c=(1-x,1-y),∴|a+b-c|=1-x2+1-y2=x-12+y-12,①如图.返回c=(x,y)对应点在AB上,而①式的几何意义为P点到AB上点的距离,其最大值为1.另外一种方法为:|a+b-c|=x-12+y-12=x2+y2-2x-2y+2=3+2-x-y=3-2x+y,∵x+y≥1,∴|a+b-c|≤3-2=1,最大值为1.[答案]B返回[名师支招]以上根据向量数与形的基本特征,结合题目的条件,层层递进,从两个方面提供了3种不同的解法,涉及向量的基本运算

1 / 37
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功