材料力学试卷C

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

南昌航空大学科技学院2010—2011学年第二学期考试课程名称:材料力学B卷考试班级:0981021/22/23考试方式:开卷[]闭卷[√]题号一二三四(1)(2)(3)(4)合计满分20101812151015实得分一、单项选择题:请将正确答案的序号填入划线内(每小题2分,共20分)1.低碳钢拉伸经过冷作硬化后,以下四种指标中得到提高:A.强度极限;B.比例极限;C.断面收缩率;D.伸长率(延伸率)。2.没有明显屈服平台的塑性材料,其破坏应力取材料的。A.比例极限p;B.名义屈服极限2.0;C.强度极限b;D.根据需要确定。3.图示两木杆(Ⅰ和Ⅱ)连接接头,承受轴向拉力作用,错误答案....是。A.1-1截面偏心受拉;B.2-2为受剪面;C.3-3为挤压面;D.4-4为挤压面。4.梁在集中力偶作用截面处,则。A.剪力图有突变,弯矩图无变化;B.剪力图有突变,弯矩图有折角;C.弯矩图有突变,剪力图无变化;D.弯矩图有突变,剪力图有折角。5.若将受扭圆轴的横截面面积增加一倍,则该轴的单位转角是原来的倍。A.16;B.8;C.1/16;D.1/4。6.一空间折杆受力如图所示,则AB杆的变形为。A.偏心拉伸;B.纵横弯曲;C.弯扭组合;D.拉、弯、扭组合。7.对于一个应力单元体,下列结论中错误的是。A.正应力最大的面上切应力必为零。B.切应力最大的面上正应力必为零。C.切应力最大的面与正应力最大的面相交成045。D.正应力最大的面与正应力最小的面相互垂直。8.梁截面面积相同时,其截面的抗弯能力。A.工字形矩形圆形;B.矩形工字形圆形;C.圆形矩形工字形;D.工字形圆形矩形。9.广义虎克定律适用范围为。A.脆性材料;B.塑性材料;班级-------------------学号--------------姓名-----------------重修标记评阅人得分IIPPI11223344C.材料为各向同性,且处于线弹性范围内;D.任何材料。10.一钢质细长压杆,为提高其稳定性,可供选择的有效措施有()A.采用高强度的优质钢;B.减小杆件的横截面面积;C.使截面两主惯轴方向的柔度相同;D.改善约束条件、减小长度系数。二、判断题:正确的划√,错误的划×(每小题2分,共10分)1.材料受外力后变形,卸去外力后能够完全消失的变形称为弹性变形。()2.杆件受轴向力作用时,纵向相对变形除以横向相对变形的绝对值称为泊松比。()3.稳定性是指压杆保持其原有直线平衡状态的能力。()4.通过某点处的诸截面中,切应力等于零的截面称为该点的主平面。()5.在变截面梁中,最大正应力不一定出现在弯矩值最大的截面上。()三、填空题:请将正确答案写在划线内(每空2分,计20分)1.平面弯曲梁横截面上一点正应力的计算公式是根据、、三个方面的关系得来的。2.外径为D、内外径之比为的圆环形截面的扭转截面系数Wp=。3.平面弯曲梁的q、Fs、M微分关系的表达式分别为、,、、、,。4.杆件的刚度代表了杆件抵抗的能力。5.静定梁的基本结构形式除了简支梁外还有和两种。四、计算题(共52分)1.铸铁梁受荷载情况如图示。已知截面对形心轴的惯性矩Iz=403×10-7m4,铸铁抗拉强度[σ+]=50MPa,抗压强度[σ-]=125MPa。试按正应力强度条件校核梁的强度。评阅人得分评阅人得分评阅人得分.2、图示支架,斜杆BC为圆截面杆,直径d=45mm、长度l=1.25m,材料为优质碳钢,p=200MPa,E=200GPa。若[n]st=4,试按BC杆的稳定性确定支架的许可载荷][F。(20分)3、图示水平面内的直角拐轴,受铅垂向下的载荷F的作用。已知20FkN,[]160MPa,试按第三强度理论校核AB实心圆轴的强度。(10分)(单位:mm)评阅人得分评阅人得分4、试求图示刚架A点的铅垂位移。刚架各段EI均为常数。(共15分)评阅人得分22crEPAcrsPA432pDI464zDI附:材料力学常用公式拉伸变形:扭转变形:弯曲变形:应力状态分析:组合变形:压杆稳定:或或两端铰支:1;一端固定,一端自由:2;两端固定:5.0;一端固定,一端铰支:7.0动载荷:自由落体:水平冲击:能量法:卡氏定理:莫尔积分:静不定正则方程22()22maxminxyxyxy22xyxytgLi212,spaEb()crPabA132maxNFAmaxmaxtTW1nNiiiiFllEA1niiiiPiTLGIPTIzMyImaxmaxzMWmaxmaxmaxzMyI11231[()]E22311[()]E33121[()]E11r2123()r313r22241223311[()()()]2r223rMTW224075rMTW.IiAdst211hK2dstvKgNNp()()()()()()dddiiiiFxFxTxTxMxMxxxxEAFGIFEIF()()()()()()ΔdddNNlllpFxFxTxTxMxMxxxxEAGIEI11112211211222221122000nnFnnFnnnnnnFXXXXXXXXXiFΔdilMMxEIijdijlMMxEI316tDW332zDW312zbhI平面图形的几何性质:圆截面:矩形截面:26zbhW

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功