AR模型的功率谱估计BURG算法的分析与仿真钱平(信号与信息处理S101904010)一.引言现代谱估计法主要以随机过程的参数模型为基础,也可以称其为参数模型方法或简称模型方法。现代谱估计技术的研究和应用主要起始于20世纪60年代,在分辨率的可靠性和滤波性能方面有较大进步。目前,现代谱估计研究侧重于一维谱分析,其他如多维谱估计、多通道谱估计、高阶谱估计等的研究正在兴起,特别是双谱和三谱估计的研究受到重视,人们希望这些新方法能在提取信息、估计相位和描述非线性等方面获得更多的应用。现代谱估计从方法上大致可分为参数模型谱估计和非参数模型谱估计两种。基于参数建摸的功率谱估计是现代功率谱估计的重要内容,其目的就是为了改善功率谱估计的频率分辨率,它主要包括AR模型、MA模型、ARMA模型,其中基于AR模型的功率谱估计是现代功率谱估计中最常用的一种方法,这是因为AR模型参数的精确估计可以通过解一组线性方程求得,而对于MA和ARMA模型功率谱估计来说,其参数的精确估计需要解一组高阶的非线性方程。在利用AR模型进行功率谱估计时,必须计算出AR模型的参数和激励白噪声序列的方差。这些参数的提取算法主要包括自相关法、Burg算法、协方差法、改进的协方差法,以及最大似然估计法。本章主要针对采用AR模型的两种方法:Levinson-Durbin递推算法、Burg递推算法。实际中,数字信号的功率谱只能用所得的有限次记录的有限长数据来予以估计,这就产生了功率谱估计这一研究领域。功率谱的估计大致可分为经典功率谱估计和现代功率谱估计,针对经典谱估计的分辨率低和方差性能不好等问题提出了现代谱估计,AR模型谱估计就是现代谱估计常用的方法之一。信号的频谱分析是研究信号特性的重要手段之一,通常是求其功率谱来进行频谱分析。功率谱反映了随机信号各频率成份功率能量的分布情况,可以揭示信号中隐含的周期性及靠得很近的谱峰等有用信息,在许多领域都发挥了重要作用。然而,实际应用中的平稳随机信号通常是有限长的,只能根据有限长信号估计原信号的真实功率谱,这就是功率谱估计。二.AR模型的构建假定u(n)、x(n)都是实平稳的随机信号,u(n)为白噪声,方差为,现在,我们希望建立AR模型的参数和x(n)的自相关函数的关系,也即AR模型的正则方程(normalequation)。由)}()]()({[)}()({)(1nxmnukmnxEmnxnxEmpkkxarpkxnxmnuEnxknmxEmr1)}()({)}()({)()()()(1mkmmrrarxuxpkkx(1)由于u(n)是方差为的白噪声,有)()()(})()()({)(2020mhkmkhknukhmnuEmkkxur000)}()({2mmmnxnuE(2)由Z变换的定义,,当时,有h(0)=1。综合(1)及(2)两式,0)(1)()(121mkmkmmpkxkpkxkxrarar(3)在上面的推导中,应用了自相关函数的偶对称性。上式可写成矩阵式:0001)0()2()1()()2()0()1()2()1()1()0()1()()2()1()0(221xxxxxxxxxxxxxxxxaaarrrrrrrrrrrrrrrrppppppp(4)(4)上述两式即是AR模型的正则方程,又称Yule-Walker方程。系数矩阵不但是对称的,而且沿着和主对角线平行的任一条对角线上的元素都相等,这样的矩阵称为Toeplitz矩阵。若x(n)是复过程,那么,系数矩阵是Hermitian对称的Toeplitz矩阵。(4)式可简单地表示为式中,为全零列向量,R是的自相关矩阵。可以看出,一个p阶的AR模型共有p+1个参数,即,只要知道x(n)的前p+1个自相关函数,由(1),(2)及(3)式的线性方程组即可求出这p+1个参数,即可求出x(n)的功率谱。三.AR模型阶数的选择AR模型的阶次p一般事先是不知道的,需要事先选定一个稍大的值,在递推的过程中确定。在使用Levinson递推时,可以给出由低阶到高阶的每一组参数,且模型的最小预测误差功率是递减的。直观上讲,当达到所指定的希望值,或是不再发生变化时,其时的阶次即是应选的正确阶次。因为是单调下降的,因此,的值降到多少才合适,往往不好选择。为此,有几个不同的准则被提出,其中较常用的两个是:最终预测误差准则:(1)(2)信息论准则:式中N为数据的长度,当阶次k由1增加时,FPE(k)和AIC(k)都将在某一个k处取得极小值。将此时的k定为最合适的阶次p。在实际运用时发现,当数据较短时,它们给出的阶次偏低,且二者给出的结果基本上是一致的。应该指出,上面两式仅为阶次的选择提供了一个依据,对所研究的某一个具体信号x(n),究竟阶次取多少为最好,还要在实践中所得到的结果作多次比较后,予以确定。四.Burg算法的理论分析Burg算法是较早提出的建立在数据基础上的AR系数求解的有效算法[7]。其特点是:(1)令前后向预测误差功率(5)为最小。(2)和的求和范围从p至N-1,即,前后都不加窗,这时(6)在上式中,阶次m由1至p时,(7)下式的递推关系,即(8)(9)(10)式中。这样,(5)式的仅是反射系数的函数。在阶次m时,令相对为最小,即可估计出反射系数。将(6)、(7)及(8)式代入(5)式,令0mfbk,可得使为最小的为式中。按此式估计出的满足。按上式估计出后,在阶次m时的AR模型系数仍然由Levinson算法递推求出(11)(12)式中。上面三式是假定在第(m-1)阶时的AR参数已求出。Burg算法的递推步骤是:(1)由初始条件,再由(11)式求出;(2)由得m=1时的参数:;(3)由求出,再估计;(4)依照(11)、(12)式的Levinson递推关系,求出m=2时的及。(5)重复上述过程,直到m=p,求出了所有阶次时的AR参数。上述递推过程是建立在数据基础上的,避开了先估计自相关函数的这一步。若定义:可以证明可以由和递推计算:这样,可以有效地提高计算速度。五.Burg算法的MATLAB仿真%Burg算法%生成信号xnf1=30;f2=60;f=[f1;f2];A=[12];Fs=200;%取样频率n=0:1/Fs:1;x=A*sin(2*pi*f*n);%生成噪声n和被污染的信号xnrandn('state',0);n=0.1*randn(size(n));xn=x+n;%设置参数order=10;nfft=512;%Burg算法[Pxx1,f]=pburg(xn,order,nfft,Fs);Pxx1=10*log10(Pxx1);subplot(1,1,1),plot(f,Pxx1);xlabel(‘频率(Hz)’);ylabel(‘功率谱密度(dB/Hz)’);title(‘Burg算法(阶数=15)’);gridon;0102030405060708090100-50-45-40-35-30-25-20-15-10-50频率(Hz)功率谱密度(dB/Hz)Burg算法(阶数=10)图1阶数为10,噪声为0.1时的Burg算法得到的仿真结果0102030405060708090100-30-25-20-15-10-50频率(Hz)功率谱密度(dB/Hz)Burg算法(阶数=10)图2阶数为10,噪声为1时的Burg算法得到的仿真结果0102030405060708090100-50-45-40-35-30-25-20-15-10-50频率(Hz)功率谱密度(dB/Hz)Burg算法(阶数=15)图3阶数为15,噪声为0.1时的Burg算法得到的仿真结果仿真结果:Burg算法得到的谱线分辨率很高,谱的波动性不大,能清晰的分辨出两个频率值,且没有出现假峰。从图中可以看出在两个阶数不同的情况下都能很好的分辨出两个频率的峰值,说明增加阶数并没有增大频率分辨率,而增加的阶数反而使计算量加大。相比较Levinson-Durbin算法而言,Burg算法因为没有使用自相关估计法,结果与真实值更加接近,而且可以进行外推,所以Burg算法要比Levinson-Durbin算法要好。当噪声方差加大为原来的10倍时,还能比较清楚的分辨出两个频率值如图2所示,说明Burg算法的抗干扰能力比较好。六.总结参数建模谱估计方法是现代谱估计的重要内容,AR模型谱估计隐含着数据和自相关函数的外推,其长度可能超过给定的长度,分辨率不受信源信号长度的限制,所以现代谱估计研究主要是用基于AR模型的方法估计功率谱,这是经典谱估计无法做到的。通过实践,AR模型的Burg法也存在问题:(1)计算量大;(2)信号起始相位变动可导致谱线偏移和分裂;(3)低信噪比可导致谱分辨率下降、谱线偏移、甚至丢失;(4)阶数的确定还没有找到确切有效准则。这些是AR模型估计的不足之处。功率谱估计是信息学科中的研究热点。现代谱估计主要是针对经典谱估计(周期图和自相关法)的分辨率低和方差性能不好的问题而提出的。其内容极其丰富,涉及的学科和领域也相当广泛,按是否有参数大致可分为参数模型估计和非参数模型估计,前者有AR模型、MA模型、ARMA模型、PRONY指数模型等;后者有最小方差方法、多分量的MUSIC方法等。从信号的特征来分,在这之前所说的方法都是对平稳随机信号而言,其谱分量不随时间变化。对非平稳随机信号,其谱是时变的,近十五年,以Wigner分布为代表的时频分析引起了人们广泛的兴趣,形成了现代谱估计的一个新的研究领域。