第十四中学1第周第课时授课时间:20年月日(星期)课题:§3.1不等式与不等关系第1课时授课类型:新授课【教学目标】1.知识与技能:通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质;2.过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法;3.情态与价值:通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯。【教学重点】用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。理解不等式(组)对于刻画不等关系的意义和价值。【教学难点】用不等式(组)正确表示出不等关系。【教学过程】1.课题导入在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系。如两点之间线段最短,三角形两边之和大于第三边,等等。人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系。在数学中,我们用不等式来表示不等关系。下面我们首先来看如何利用不等式来表示不等关系。2.讲授新课1)用不等式表示不等关系引例1:限速40km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h,写成不等式就是:40v引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2.5%,蛋白质的含量p应不少于2.3%,写成不等式组就是——用不等式组来表示2.5%2.3%fp问题1:设点A与平面的距离为d,B为平面上的任意一点,则||dAB。问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本。据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元呢?第十四中学2解:设杂志社的定价为x元,则销售的总收入为2.5(80.2)0.1xx万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式2.5(80.2)200.1xx问题3:某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种。按照生产的要求,600mm的数量不能超过500mm钢管的3倍。怎样写出满足所有上述不等关系的不等式呢?解:假设截得500mm的钢管x根,截得600mm的钢管y根。根据题意,应有如下的不等关系:(1)截得两种钢管的总长度不超过4000mm;(2)截得600mm钢管的数量不能超过500mm钢管数量的3倍;(3)截得两种钢管的数量都不能为负。要同时满足上述的三个不等关系,可以用下面的不等式组来表示:5006004000;3;0;0.xyxyxy3.随堂练习1、试举几个现实生活中与不等式有关的例子。2、课本P82的练习1、24.课时小结用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。5.评价设计课本P83习题3.1[A组]第4、5题【板书设计】【授后记】第周第课时授课时间:20年月日(星期)第2课时授课类型:新授课【教学目标】1.知识与技能:掌握不等式的基本性质,会用不等式的性质证明简单的不等式;2.过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法;3.情态与价值:通过讲练结合,培养学生转化的数学思想和逻辑推理能力.第十四中学3【教学重点】掌握不等式的性质和利用不等式的性质证明简单的不等式;【教学难点】利用不等式的性质证明简单的不等式。【教学过程】1.课题导入在初中,我们已经学习过不等式的一些基本性质。请同学们回忆初中不等式的的基本性质。(1)不等式的两边同时加上或减去同一个数,不等号的方向不改变;即若abacbc(2)不等式的两边同时乘以或除以同一个正数,不等号的方向不改变;即若,0abcacbc(3)不等式的两边同时乘以或除以同一个负数,不等号的方向改变。即若,0abcacbc2.讲授新课1、不等式的基本性质:师:同学们能证明以上的不等式的基本性质吗?证明:1)∵(a+c)-(b+c)=a-b>0,∴a+c>b+c2)()()0acbcab,∴acbc.实际上,我们还有,abbcac,(证明:∵a>b,b>c,∴a-b>0,b-c>0.根据两个正数的和仍是正数,得(a-b)+(b-c)>0,即a-c>0,∴a>c.第十四中学4于是,我们就得到了不等式的基本性质:(1),abbcac(2)abacbc(3),0abcacbc(4),0abcacbc2、探索研究思考,利用上述不等式的性质,证明不等式的下列性质:(1),abcdacbd;(2)0,0abcdacbd;(3)0,,1;nnnnabnNnabab。证明:1)∵a>b,∴a+c>b+c.①∵c>d,∴b+c>b+d.②由①、②得a+c>b+d.2)bdacbdbcbdcbcaccba0,0,3)反证法)假设nnba,则:若nnnnabababab这都与ba矛盾,∴nnba.[范例讲解]:例1、已知0,0,abc求证ccab。证明:以为0ab,所以ab0,10ab。第十四中学5于是11ababab,即11ba由c0,得ccab3.随堂练习11、课本P82的练习32、在以下各题的横线处适当的不等号:(1)(3+2)26+26;(2)(3-2)2(6-1)2;(3)251561;(4)当a>b>0时,log21alog21b答案:(1)<(2)<(3)<(4)<[补充例题]例2、比较(a+3)(a-5)与(a+2)(a-4)的大小。分析:此题属于两代数式比较大小,实际上是比较它们的值的大小,可以作差,然后展开,合并同类项之后,判断差值正负(注意是指差的符号,至于差的值究竟是多少,在这里无关紧要)。根据实数运算的符号法则来得出两个代数式的大小。比较两个实数大小的问题转化为实数运算符号问题。解:由题意可知:(a+3)(a-5)-(a+2)(a-4)=(a2-2a-15)-(a2-2a-8)=-7<0∴(a+3)(a-5)<(a+2)(a-4)随堂练习21、比较大小:(1)(x+5)(x+7)与(x+6)2(2)2256259xxxx与4.课时小结本节课学习了不等式的性质,并用不等式的性质证明了一些简单的不等式,还研究了如何比较两个实数(代数式)的大小——作差法,其具体解题步骤可归纳为:第一步:作差并化简,其目标应是n个因式之积或完全平方式或常数的形式;第二步:判断差值与零的大小关系,必要时须进行讨论;第三步:得出结论5.评价设计课本P83习题3.1[A组]第2、3题;[B组]第1题【板书设计】【授后记】第十四中学6第周第课时授课时间:20年月日(星期)课题:§3.2一元二次不等式及其解法第1课时授课类型:新授课【教学目标】1.知识与技能:理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力;2.过程与方法:经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法;3.情态与价值:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。【教学重点】从实际情境中抽象出一元二次不等式模型;一元二次不等式的解法。【教学难点】理解二次函数、一元二次方程与一元二次不等式解集的关系。【教学过程】1.课题导入从实际情境中抽象出一元二次不等式模型:教材P84互联网的收费问题教师引导学生分析问题、解决问题,最后得到一元二次不等式模型:250xx…………………………(1)2.讲授新课1)一元二次不等式的定义象250xx这样,只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式2)探究一元二次不等式250xx的解集怎样求不等式(1)的解集呢?探究:(1)二次方程的根与二次函数的零点的关系容易知道:二次方程的有两个实数根:120,5xx二次函数有两个零点:120,5xx于是,我们得到:二次方程的根就是二次函数的零点。第十四中学7(2)观察图象,获得解集画出二次函数25yxx的图象,如图,观察函数图象,可知:当x0,或x5时,函数图象位于x轴上方,此时,y0,即250xx;当0x5时,函数图象位于x轴下方,此时,y0,即250xx;所以,不等式250xx的解集是|05xx,从而解决了本节开始时提出的问题。3)探究一般的一元二次不等式的解法任意的一元二次不等式,总可以化为以下两种形式:220,(0)0,(0)axbxcaaxbxca或一般地,怎样确定一元二次不等式cbxax20与cbxax20的解集呢?组织讨论:从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集,关键要考虑以下两点:(1)抛物线ycbxax2与x轴的相关位置的情况,也就是一元二次方程cbxax2=0的根的情况(2)抛物线ycbxax2的开口方向,也就是a的符号总结讨论结果:(l)抛物线ycbxax2(a0)与x轴的相关位置,分为三种情况,这可以由一元二次方程cbxax2=0的判别式acb42三种取值情况(Δ0,Δ=0,Δ0)来确定.因此,要分二种情况讨论(2)a0可以转化为a0分ΔO,Δ=0,Δ0三种情况,得到一元二次不等式cbxax20与cbxax20的解集一元二次不等式00022acbxaxcbxax或的解集:设相应的一元二次方程002acbxax的两根为2121xxxx且、,acb42,则不等式的解的各种情况如下表:(让学生独立完成课本第86页的表格)000二次函数cbxaxy2(0a)的图象cbxaxy2cbxaxy2cbxaxy2第十四中学8一元二次方程的根002acbxax有两相异实根)(,2121xxxx有两相等实根abxx221无实根的解集)0(02acbxax21xxxxx或abxx2R的解集)0(02acbxax21xxxx[范例讲解]例2(课本第87页)求不等式01442xx的解集.解:因为210144,0212xxxx的解是方程.所以,原不等式的解集是21xx例3(课本第88页)解不等式0322xx.解:整理,得0322xx.因为032,02xx方程无实数解,所以不等式0322xx的解集是.从而,原不等式的解集是.3.随堂练习课本第89的练习1(1)、(3)、(5)、(7)4.课时小结解一元二次不等式的步骤:①将二次项系数化为“+”:A=cbxax20(或0)(a0)②计算判别式,分析不等式的解的情况:ⅰ.0时,求根1x2x,.002121xxxAxxxA,则若;或,则若ⅱ.=0时,求根1x=2x=0x,.00000xxAxAxxA,则若;,则若的一切实数;,则若第十四中学9ⅲ.0时,方程无解,.00xARxA,则若;,则若③写出解集.5.评价设计课本第89页习题3.2[A]组第1题【板书设计】【授后记】第周第课时授课时间:20年月日(星期)课题:§3.2一元二次不等式及其解法第2课时授课类型:新授课【教学目标】1.知识与技能:巩固一元二次方程、一元二次不等式与二次函数的关系;进一步熟练解一元二次不等式的解法;2.过程与方法:培养数形结合的能力,一题多解的能力,培养抽象概括能力和逻辑思维