1电子连接器可靠性及其測試方法2一、产品的可靠性“可靠性”译自英文“Reliability”,日本人将之译为“信赖性”,指在给定条件下、规定期间中,一个产品执行某种功能的可能性。开始发展于第二次世界大战期间,发展历程如下:1,真空管时代二战期间,美军作战的战斗机使用的通信设备中半数以上无法使用,经过详细调查发现几乎都为真空管不良引起。但对真空管进行品质全面检查时,从进料、生产、出货整个过程都完全达到图面要求的规格水准。此时才发现产品还需要考虑坚固耐用,并将其导入设计规范和图面中,开始以制造不易故障的产品为目标。2,阿波罗计划将可靠性技术导入阿波罗计划中,使原本落后于前苏联的太空计划,因阿波罗登月成功而后来居上、一举成名。3一、产品的可靠性3,1965年IEC(国际电气标准委员会)设立《可靠性技术》委员会。1975年正式发表《可靠性和可维护性》规范(Reliability&Maintainability)4,可靠性技术引入日本约在1960年前后,最成功的例子是日本新干线。到目前为止,新干线已累积运行近10亿公里,足可环绕地球25,000圈以上,从未发生重大事故。可靠性包括三个方面的要素1,给定的条件,亦即使用条件或环境条件2,规定的期间,亦即产品寿命3,要求的性能,性能或故障的定义4二、产品品质与可靠性产品品质技术特性产品特性功能方面实用方面尺寸配合使用特性(性能)坚固耐用维修容易可靠性可维护性狭义品质广义可靠性Q、C、DQ:Quality;C:Cost;D:Delivery5三、电子连接器的可靠性1,简介连接器的可靠性考虑如下几种因素:A、产品设计和产品制造的材料B、操作环境C、功能要求应用的环境,特别是温度、湿度、腐蚀性,决定了哪些自身的失效机理会发生作用,而连接器功能的要求,决定了怎样的失效程度是允许的。2,可靠性评估的程序连接器可靠性评估程序包括如下内容:A、决定应用的可接受的标准,包括端子电阻和其它的失效模式。按照应用的重要性确认发生作用的失效机理并分类。B、开发测试程序处理预测的应用中的失效机理,排列并分等级。C、定下加速因子(规定X天暴露的A试验相当于Y年的B项应用),如有可能,做特别的测试。D、根据从鉴定程序得来的数据,作适当的数据分析和数据统计处理。E、评估可靠性以上的步骤依赖于工程上的判断。连接器的制造商和用户应该对鉴定程序的内容和方法一致同意认可。6三、电子连接器的可靠性3,连接器的定义从功能上定义:电子连接器:在一个电子系统中的两个子系统之间提供一个可分离的连接,而又不会对系统的性能产生不可接受的影响。可分离性是我们要使用连接器的理由,方便对一个系统的子系统或零件的维修、升级。同时,这种连接对系统的性能不能产生任何不可接受的影响。例如信号的吸收、衰减、电力的损耗。可分离和不可接受的的限度的要求,决定于连接器的具体应用要求。从结构上定义:连接器有四个结构性的元素,它们是:A、端子(间)的接触界面B、端子的表面处理C、端子的簧片D、连接器的壳体请参考图1-1。7三、电子连接器的可靠性连接器的结构端子(间)的接触界面端子的表面处理端子的簧片连接器的壳体图18三、电子连接器的可靠性A、端子(间)的接触界面端子间的接触界面决定了端子的电阻、连接器的寿命(性能不失效的情况下插拨次数)和失效的发生。端子间的接触界面有两种形式:可分离性接触------连接器的每次插入时形成的联接永久性接触------连接器固定在子系统上的点,这些点是当作永久连接的。B、端子的表面处理端子的表面处理有两个主要功能:a、保护端子簧片的基材不生锈b、优化端子间的接触界面端子的表面处理主要分为两大类:a、贵金属表面处理我们所讲的贵金属即惰性金属。主要有金(Au)、钯(Pd)及其合金。b、非贵金属的表面处理锡是最常用的非贵金属表面处理,因为它的表面氧化层很容易在连接器插入过程中被破坏掉。9三、电子连接器的可靠性C、端子的簧片端子簧片提供如下三个功能:a、传输电力或信号b、提供端子正向力来建立和维持可分离的端子接触界面c、提供永久性端子接触界面的连接点D、连接器壳体(HOUSING)连接器壳体提供如下四项功能:a、端子间的电气绝缘b、固定端子的几何位置,利于插入和尺寸稳定c、为端子提供机械保护和支撑d、将端子从应用环境中隔离开来,减少对腐蚀的敏感10三、电子连接器的可靠性4,连接器的电阻R总体电阻=R(永久性接触)+R(体电阻)+R(接触电阻)公式1如图2所示的连接器,通过测量两个PCB板的引线可以测量连接器的整体电阻。电阻范围大约为2~20微欧姆。电阻包含三个方面:a、永久性接触界面的电阻的范围为几个至几十个微欧;b、体电阻是端子弹簧片的电阻,图2指的是公型弹簧片和母型弹簧片的电阻,取决于弹簧片的材料、几何形状,其范围也一般为几至几十微欧。C、可分离式的接触电阻一般只有几个微欧或更低。低的和稳定的电阻是连接器的一个主要要求之一,永久性接触电阻和体电阻是稳定的,总体电阻的不稳定是由接触电阻引起的。R(接触电阻)=R(集中电阻)+R(膜层电阻)公式2R(集中电阻)主要由接触的面积及接触面的表面处理有关膜层主要有:氧化物膜层,存在于大部分膜层化学膜层,包含氯化物、硫化物、氮化物等,所处的环境有关,是化学粘附吸附膜层,通常为水和有机物,松散地吸附在表面污染物层因此,R(膜层电阻)主要与其使用的环境有关图3和4分别描述了集中电阻和膜层结构。11三、电子连接器的可靠性图2连接器电阻组成示意图R(永久性接触)R(永久性接触)R(体电阻)R(体电阻)R(接触电阻)12三、电子连接器的可靠性图3接触电阻示意图集中区域接触点膜层13三、电子连接器的可靠性图4典型的覆盖的膜层结构金属底层冷作硬化层氧化物层吸附物层污染物层14三、电子连接器的可靠性5,连接器的功能连接器分为信号连接器和电源连接器这两种连接器的功能要求是不同的。15三、电子连接器的可靠性6,连接器的应用为了理解连接器的应用AMP建立了六个等级来定义系统中不同的内部连接,即电子封装的六个等级。等级1:芯片内部集成电路与金属引脚之间的连接主要由高速自动的方法制造非常特别通常不是可分离的和可修补的装入到器件的封装中必须极端可靠例如各种芯片等级2:芯片与PCB之间的连接通常必须能耐焊接的环境相对来说,尺寸较小,通常不需要固定硬件低的插拨次数要求由专业人员服务例如DIPSocket例如PGA(PinGridArray,针阵列)370,mPGA478(Northwood)16三、电子连接器的可靠性6,连接器的应用等级3:PCB之间的连接,通常有三种,即垂直板连接(mother/daughter,),平行板连接(ParallelStacked,=)和同一平面内连接(Planar,一一)。插拨次数在几十至上百次。针的数目比较多,有超过1000,属高密度连接器。由于高的针数目,插拨力比较重要,有导向作用的硬件和键。高速的能力支持板的处理速度,微毫秒、微微秒开关,可控制的阻抗开始变得重要。要求可维修性。在系统的层次,是专业人员服务,但用户直接使用的情况在增长,因此要考虑坚固性。例如:AGP、PCI、DIMM、CardEdge系列。等级4:子系统之间的连接,由于子系统之间能常都有一定的距离,因此一般都通过Cable和Harness完成。特别的结构,便于电缆的应用。插拨次数在几百次。由于用户自行连接,要坚固。锁紧结构很平常,防止振动或其它器件的移动而造成的脱离接触。考虑EMI/RFI(电磁干扰)的情况增多了。屏蔽和过滤的要求增多了。例如UltraATACable,AMP-Latch,CT(CommonTermination)Cable,EI/MTEICable17三、电子连接器的可靠性6,连接器的应用等级5:系统内部子系统与I/O接口之间的连接由于连接器的一半是在系统的外面,标准化很重要。同样的原因,要坚固、易用。考虑屏蔽、过滤和干涉很重要。其它的要求同等级4。例如:USB系列、IEEE1394系列、MODJK系列、D-Sub系列。等级6:不同系统之间的连接,包括电缆组件、电源线组件、射频同轴电缆组件及光纤保留等级4及5的要求坚固变得很重要插拨次数要求增加,几百次甚至近千次。由于更长的暴露的长度,屏蔽和过滤很重要标准化是一个主要的考虑工业标准如RS232、RS-449、SCSI-1、SCSI-2、IEEE1394、IEEE802.3,MIL-C-39012(与射频同轴接插件有关),MIL-C-24308(与AMPLIMITE有关),V35(系统内连接和网络工业有关),905及906(与光纤连接器有关)。例如AMPLIMITE线缆、USBCable、MODJKCABLE,各种同轴CABLE。18三、电子连接器的可靠性图5电子封装的六个等级19三、电子连接器的可靠性7,连接器的可靠性A、定义在给定的应用条件下,规定的期间内,保持规定的连接器电阻范围的可能性。B、失效模式连接器电阻增大超出规定的范围。C、失效机理腐蚀磨损端子正向力损失20三、电子连接器的可靠性8,连接器的失效机理A、腐蚀腐蚀主要与端子接触界面和表面处理有关。腐蚀导致端子电阻增加的两个主要机理为:一系列的膜层形成于接触界面和腐蚀性的的物质渗透至接触界面而导致接触区域减少必须要考虑的三个常见的腐蚀类型有:表面腐蚀指腐蚀膜层覆盖在端子表面,如锡氧化物、钯/钯合金的氯化物腐蚀迁移指腐蚀性的物质迁移至端子表面而到接触区域。应用的环境对腐蚀迁移很敏感,例如硫和氯存在的环境小孔腐蚀如果腐蚀迁移位置发生于一个小孔,一个小小的电镀表面的不连续的孔,这种腐蚀机理叫小孔腐蚀。小孔本身不影响接触电阻,而只有小孔变成腐蚀源头时,才会使接触电阻下降。21三、电子连接器的可靠性B、磨损由于磨损的作用,增加了接触界面对腐蚀的敏感性,通过对基材的表面处理,保护了基层和优化了膜层表面,而磨损会使表面处理的功能丧失。影响磨损的因素V=(KFnI)/H公式3V为每次循环磨损量,K为摩擦系数,Fn为正向力,I为滑入长度,H为接触表面材料硬度。摩擦系数K,由几何形状、正向力、表面硬度、润滑状况和材料决定。正向力Fn,Fn增加,增加了粘结和相应的研磨的磨损,因而增加了磨损。滑入长度I,很明显,I增加,磨损会增加,因此要限制插入深度。表面处理硬度H,影响接触区域的面积,硬的和软的表面处理的搭配的对拼,软的磨损物质会转移至硬的表面,所以在连接器中,通常连接器对拼的两个部分的电镀材料是一样的。小结:磨损可以通过慎重地选择合适的材料(表面硬度)控制正向力和使用润滑剂来降至最低。22三、电子连接器的可靠性C、端子正向力损失对于连接器的失效,正向力的损失,会造成端子接触界面的机械稳定性降低,而机械稳定性的降低又会引起接触界面对机械或热诱发的应变的扰动的敏感性提高,从而增加接触电阻。正向力损失主要有两个方面:永久变形。永久变形指端子梁由于塑性变形而偏离原始位置造成梁偏移减少,因此正向力降低。是由插拔过程中的过应力,通常是因为不正确的或粗鲁的插拔引起的,要通壳体和/或端子的结构设计来解决,例如增加导向结构防过插入等。应力松驰应力松驰的结果是应力S的减少,从而正向力下降。应力松驰是不可避免的,只能控制,应力松驰的速度与设计选择的材料和施加的应力及应用环境的温度有关。应力松驰依赖于时间和温度。23四、连接器可靠性要求的测试EnvironmentalTest(Thermal,Humid.)環境试验(耐熱、湿度)*Heat.*Temp.cycling.*Cold.*Humidity.耐熱、温度循环測試、*Shower*Solderingheatresistance.耐湿、喷淋、焊錫耐熱測試EnvironmentalTest(Corrosion,Others)環境试验(腐蚀、其它)*SO2gas.*H2Sgas.*Saltspray.SO2气体、H2S气体、*Weather.*Dust盐霧、耐气候性、耐灰塵