1NoSQL开篇——为什么要使用NoSQL【编者按】NoSQL在2010年风生水起,大大小小的Web站点在追求高性能高可靠性方面,不由自主都选择了NoSQL技术作为优先考虑的方面。今年伊始,InfoQ中文站有幸邀请到凤凰网的孙立先生,为大家分享他之于NoSQL方面的经验和体会。非常荣幸能受邀在InfoQ开辟这样一个关于NoSQL的专栏,InfoQ是我非常尊重的一家技术媒体,同时我也希望借助InfoQ,在国内推动NoSQL的发展,希望跟我一样有兴趣的朋友加入进来。这次的NoSQL专栏系列将先整体介绍NoSQL,然后介绍如何把NoSQL运用到自己的项目中合适的场景中,还会适当地分析一些成功案例,希望有成功使用NoSQL经验的朋友给我提供一些线索和信息。NoSQL概念随着web2.0的快速发展,非关系型、分布式数据存储得到了快速的发展,它们不保证关系数据的ACID特性。NoSQL概念在2009年被提了出来。NoSQL最常见的解释是“non-relational”,“NotOnlySQL”也被很多人接受。(“NoSQL”一词最早于1998年被用于一个轻量级的关系数据库的名字。)NoSQL被我们用得最多的当数key-value存储,当然还有其他的文档型的、列存储、图型数据库、xml数据库等。在NoSQL概念提出之前,这些数据库就被用于各种系统当中,但是却很少用于web互联网应用。比如cdb、qdbm、bdb数据库。传统关系数据库的瓶颈传统的关系数据库具有不错的性能,高稳定型,久经历史考验,而且使用简单,功能强大,同时也积累了大量的成功案例。在互联网领域,MySQL成为了绝对靠前的王者,毫不夸张的说,MySQL为互联网的发展做出了卓越的贡献。在90年代,一个网站的访问量一般都不大,用单个数据库完全可以轻松应付。在那个时候,更多的都是静态网页,动态交互类型的网站不多。到了最近10年,网站开始快速发展。火爆的论坛、博客、sns、微博逐渐引领web领域的潮流。在初期,论坛的流量其实也不大,如果你接触网络比较早,你可能还记得那个时候还有文本型存储的论坛程序,可以想象一般的论坛的流量有多大。Memcached+MySQL2后来,随着访问量的上升,几乎大部分使用MySQL架构的网站在数据库上都开始出现了性能问题,web程序不再仅仅专注在功能上,同时也在追求性能。程序员们开始大量的使用缓存技术来缓解数据库的压力,优化数据库的结构和索引。开始比较流行的是通过文件缓存来缓解数据库压力,但是当访问量继续增大的时候,多台web机器通过文件缓存不能共享,大量的小文件缓存也带了了比较高的IO压力。在这个时候,Memcached就自然的成为一个非常时尚的技术产品。Memcached作为一个独立的分布式的缓存服务器,为多个web服务器提供了一个共享的高性能缓存服务,在Memcached服务器上,又发展了根据hash算法来进行多台Memcached缓存服务的扩展,然后又出现了一致性hash来解决增加或减少缓存服务器导致重新hash带来的大量缓存失效的弊端。当时,如果你去面试,你说你有Memcached经验,肯定会加分的。Mysql主从读写分离由于数据库的写入压力增加,Memcached只能缓解数据库的读取压力。读写集中在一个数据库上让数据库不堪重负,大部分网站开始使用主从复制技术来达到读写分离,以提高读写性能和读库的可扩展性。Mysql的master-slave模式成为这个时候的网站标配了。分表分库随着web2.0的继续高速发展,在Memcached的高速缓存,MySQL的主从复制,读写分离的基础之上,这时MySQL主库的写压力开始出现瓶颈,而数据量的持续猛增,由于MyISAM使用表锁,在高并发下会出现严重的锁问题,大量的高并发MySQL应用开始使用InnoDB引擎代替MyISAM。同时,开始流行使用分表分库来缓解写压力和数据增长的扩展问题。这个时候,分表分库成了一个热门技术,是面试的热门问题也是业界讨论的热门技术问题。也就在这个时候,MySQL推出了还不太稳定的表分区,这也给技术实力一般的公司带来了希望。虽然MySQL推出了MySQLCluster集群,但是由于在互联网几乎没有成功案例,性能也不能满足互联网的要求,只是在高可靠性上提供了非常大的保证。MySQL的扩展性瓶颈在互联网,大部分的MySQL都应该是IO密集型的,事实上,如果你的MySQL是个CPU密集型的话,那么很可能你的MySQL设计得有性能问题,需要优化了。大数据量高并发环境下的MySQL应用开发越来越复杂,也越来越具有技术挑战性。分表分库的规则把握都是需要经验的。虽然有像淘宝这样技术实力强大的公司开发了透明的中间件层来屏蔽开发者的复杂性,但是避免不了整个架构的复杂性。分库分表的子库到一定阶段又面临扩展问题。还有就是需求的变更,可能又需要一种新的分库方式。3MySQL数据库也经常存储一些大文本字段,导致数据库表非常的大,在做数据库恢复的时候就导致非常的慢,不容易快速恢复数据库。比如1000万4KB大小的文本就接近40GB的大小,如果能把这些数据从MySQL省去,MySQL将变得非常的小。关系数据库很强大,但是它并不能很好的应付所有的应用场景。MySQL的扩展性差(需要复杂的技术来实现),大数据下IO压力大,表结构更改困难,正是当前使用MySQL的开发人员面临的问题。NOSQL的优势易扩展NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。也无形之间,在架构的层面上带来了可扩展的能力。大数据量,高性能NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。一般MySQL使用QueryCache,每次表的更新Cache就失效,是一种大粒度的Cache,在针对web2.0的交互频繁的应用,Cache性能不高。而NoSQL的Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说就要性能高很多了。灵活的数据模型NoSQL无需事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是一个噩梦。这点在大数据量的web2.0时代尤其明显。高可用NoSQL在不太影响性能的情况,就可以方便的实现高可用的架构。比如Cassandra,HBase模型,通过复制模型也能实现高可用。总结NoSQL数据库的出现,弥补了关系数据(比如MySQL)在某些方面的不足,在某些方面能极大的节省开发成本和维护成本。MySQL和NoSQL都有各自的特点和使用的应用场景,两者的紧密结合将会给web2.0的数据库发展带来新的思路。让关系数据库关注在关系上,NoSQL关注在存储上。4参考阅读1.NoSQL:在wiki上的介绍:相关博客:相关博客:新浪微博NoSQL微群:关于作者孙立,目前在凤凰网负责底层组的研发工作。曾就职于搜狐和ku6。多年互联网从业经验和程序开发,对分布式搜索引擎的开发,高并发,大数据量网站系统架构优化,高可用性,可伸缩性,分布式系统缓存,数据库分表分库(sharding)等有丰富的经验,并且对运维监控和自动化运维控制有经验。开源项目phplock,phpbuffer的作者。近期开发了一个NOSQL数据库存储INetDB,是NoSQL数据库爱好者。他的新浪微博是:关系数据库还是NoSQL数据库上一篇简单的说明了为什么要使用NoSQL。接下来我们看下如何把NoSQL引入到我们的项目中,我们到底要不要把NoSQL引入到项目中。在过去,我们只需要学习和使用一种数据库技术,就能做几乎所有的数据库应用开发。因为成熟稳定的关系数据库产品并不是很多,而供你选择的免费版本就更加少了,所以互联网领域基本上都选择了免费的MySQL数据库。在高速发展的WEB2.0时代,我们发现关系数据库在性能、扩展性、数据的快速备份和恢复、满足需求的易用性上并不总是能很好的满足我们的需要,我们越来越趋向于根据业务场景选择合适的数据库,以及进行多种数据库的融合运用。几年前的一篇文章《OneSizeFitsAll-AnIdeaWhoseTimeHasComeandGone》就已经阐述了这个观点。当我们在讨论是否要使用NoSQL的时候,你还需要理解NoSQL也是分很多种类的,在NoSQL百花齐放的今天,NoSQL的正确选择比选择关系数据库还具有挑战性。虽然NoSQL的使用很简单,但是选择却是个麻烦事,这也正是很多人在观望的一个原因。NoSQL的分类NoSQL仅仅是一个概念,NoSQL数据库根据数据的存储模型和特点分为很多种类。类型部分代表特点5列存储HbaseCassandraHypertable顾名思义,是按列存储数据的。最大的特点是方便存储结构化和半结构化数据,方便做数据压缩,对针对某一列或者某几列的查询有非常大的IO优势。文档存储MongoDBCouchDB文档存储一般用类似json的格式存储,存储的内容是文档型的。这样也就有有机会对某些字段建立索引,实现关系数据库的某些功能。key-value存储TokyoCabinet/TyrantBerkeleyDBMemcacheDBRedis可以通过key快速查询到其value。一般来说,存储不管value的格式,照单全收。(Redis包含了其他功能)图存储Neo4JFlockDB图形关系的最佳存储。使用传统关系数据库来解决的话性能低下,而且设计使用不方便。对象存储db4oVersant通过类似面向对象语言的语法操作数据库,通过对象的方式存取数据。xml数据库BerkeleyDBXMLBaseX高效的存储XML数据,并支持XML的内部查询语法,比如XQuery,Xpath。以上NoSQL数据库类型的划分并不是绝对,只是从存储模型上来进行的大体划分。它们之间没有绝对的分界,也有交差的情况,比如TokyoCabinet/Tyrant的Table类型存储,就可以理解为是文档型存储,BerkeleyDBXML数据库是基于BerkeleyDB之上开发的。NoSQL还是关系数据库虽然09年出现了比较激进的文章《关系数据库已死》,但是我们心里都清楚,关系数据库其实还活得好好的,你还不能不用关系数据库。但是也说明了一个事实,关系数据库在处理WEB2.0数据的时候,的确已经出现了瓶颈。那么我们到底是用NoSQL还是关系数据库呢?我想我们没有必要来进行一个绝对的回答。我们需要根据我们的应用场景来决定我们到底用什么。6如果关系数据库在你的应用场景中,完全能够很好的工作,而你又是非常善于使用和维护关系数据库的,那么我觉得你完全没有必要迁移到NoSQL上面,除非你是个喜欢折腾的人。如果你是在金融,电信等以数据为王的关键领域,目前使用的是Oracle数据库来提供高可靠性的,除非遇到特别大的瓶颈,不然也别贸然尝试NoSQL。然而,在WEB2.0的网站中,关系数据库大部分都出现了瓶颈。在磁盘IO、数据库可扩展上都花费了开发人员相当多的精力来优化,比如做分表分库(databasesharding)、主从复制、异构复制等等,然而,这些工作需要的技术能力越来越高,也越来越具有挑战性。如果你正在经历这些场合,那么我觉得你应该尝试一下NoSQL了。选择合适的NoSQL如此多类型的NoSQL,而每种类型的NoSQL又有很多,到底选择什么类型的NoSQL来作为我们的存储呢?这并不是一个很好回答的问题,影响我们选择的因素有很多,而选择也可能有多种,随着业