常微分方程答案-4.2

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

习题4.22.求解下列常系数线性微分方程:(1)(4)540xxx解:特征方程:42540特征根:12342211,,,基本解组:22,,,tttteeee所求通解:221234,,1,2,3,4ttttixcececececi(2)23330xaxaxax解:特征方程:0333223aaa特征根:1,2,3a基本解组:2,,atatatetete所求通解:2123,,1,2,3atixcctcteci(3)(5)40xx解:特征方程:0435特征根:1,2,345022,,基本解组:2221,,,,ttttee所求通解:22212345,,1,2,3,4,5ttixcctctcececi(4)0xxx解:特征方程:012特征根:1,2132i基本解组:112233cos,sin22ttetet所求通解:11221233cossin,,1,222ttixcetcetci(5)21sast(属于类型Ⅰ)解:齐次方程:20sas特征方程:022a特征根:12,aa当0a,齐次方程通解:12,,1,2atatiscececi,此时0不是特征根,故设特解为sAtB,将其代入原方程可得21aBA,从而特解为211sta,所以所求通解:12211,,1,2atatiscecetcia当0a,0是二重特征根,故齐次方程通解:12,,1,2iscctci,设特解为2stAtB,则将其代入原方程可得11,62AB,从而特解为21162stt,所以所求通解:21211,,1,262iscctttci(6)45223xxxxt(属于类型Ⅰ)解:齐次方程:4520xxxx特征方程:025423特征根:1,231,2齐次方程通解:2123,,1,2,3ttixcctececi0不是特征根,故设特解为xAtB,将其代入原方程可得1,4AB,从而特解为4xt,所以所求通解:21234,,1,2,3ttixcctecetci(7)(4)223xxxt(属于类型Ⅰ)解:齐次方程:(4)20xxx特征方程:42210特征根:1,23,41,1齐次方程通解:1234,,1,2,3,4ttixccteccteci方法一:常数变易法求解设原方程通解为1234ttttxctecttectectte,则1234112342312344212340003ttttttttttttttttctecttectecttectctecttectecttectctctecttectecttectctecttectecttet1234ctctctct所以将,1,2,3,4icti代入1234ttttxctecttectectte中即得原方程通解:212341,,1,2,3,4ttixcctecctetci方法二:比较系数法求解由于0不是特征根,故设特解为2xAtBtC,将其代入原方程可得1,0,1ABC,从而特解为21xt,所以所求通解:212341,,1,2,3,4ttixcctecctetci(10)txxe(属于类型Ⅱ)解:齐次方程:0xx特征方程:013特征根:1,2313,12i齐次方程通解:112212333cossin,,1,2,322tttixcetcetceci由于1是一重特征根,故设特解为txAte,将其代入原方程可得13A,从而特解为13txte,所以所求通解:1122123331cossin,,1,2,3223ttttixcetcetceteci(12)texxx256(属于类型Ⅱ)解:齐次方程:650xxx特征方程:0562特征根:121,5齐次方程通解:512,,1,2ttixcececi由于2不是特征根,故设特解为2txAe,将其代入原方程可得121A,从而特解为121txe,所以所求通解:5121,,1,221tttixceceeci(14)ttxx2cossin(属于类型Ⅲ的混合,注意sint和cos2t中t的系数不一样)解:齐次方程:0xx特征方程:012特征根:12i,齐次方程通解:12cossin,,1,2ixctctci①对于sinxxt,由于ii是一重特征根,故设其特解为101cossinxtAtAt,则将其代入sinxxt可得011,02AA,从而sinxxt的特解为11cos2xtt;②对于cos2xxt,由于2ii不是特征根,故设其特解为201cos2sin2xBtBt,则将其代入cos2xxt可得011,03BB,从而cos2xxt的特解为21cos23xt。所以原方程特解为1211coscos223xxxttt,故所求通解:1211cossincoscos2,,1,223ixctcttttci(15)2441ttxxxee(属于类型Ⅰ和Ⅱ的混合)解:齐次方程:440xxx特征方程:2440特征根:122,齐次方程通解:212,,1,2tixccteci①对于44txxxe,由于1不是特征根,故设其特解为10txAe,则将其代入44txxxe可得01A,从而44txxxe的特解为1txe;②对于244txxxe,由于2是二重特征根,故设其特解为2220txBte,则将其代入244txxxe可得012B,从而244txxxe的特解为22212txte;③对于441xxx,由于0不是特征根,故设其特解为30xC,则将其代入441xxx可得014C,从而441xxx的特解为314x。所以,原方程特解为221231124ttxxxxete,故所求通解:2221211,,1,224tttixccteeteci(20)11sinxxt(不属于类型Ⅰ、Ⅱ、Ⅲ的混合,用常数变易法求解)解:齐次方程:0xx特征方程:012特征根:12i,齐次方程通解:12cossin,,1,2ixctctci设原方程通解为12cossinxcttctt,则12112212cossin0cos1sin1coscotsinlnsincossin1sincttcttctttcttctttctttcttcttt所以所求通解:1212cossincoscossinlnsinsincossin1cossinlnsin,,1,2ixctctttttttctctttttci3.求下列方程的通解:(1)20txtxx解:做变换ute,则2222211,dxdxdxdxdxdttdudttdudu所以原方程可化为22122200,,1,2uuidxdxdxdxxxxcececidudududu由lnut可得所求通解:21,,1,2icxctcit

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功