北师大版九年级上册数学全册教案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

________班学生成绩记录表姓名1234567891011期中期末________班学生成绩记录表姓名1234567891011期中期末________班学生成绩记录表姓名1234567891011期中期末________班学生成绩记录表姓名1234567891011期中期末________班学生成绩记录表姓名1234567891011期中期末________班学生成绩记录表姓名1234567891011期中期末教学进度安排周次教学内容计划课时第1周(8.31~9.4)开学摸底考试复习第一章特殊平行四边形4第2周(9.7~9.11)第一章测试与讲评2.1认识一元二次方程2.2用配方法求解一元二次方程5第3周(9.14~9.18)2.3用公式求解一元二次方程2.4用因式分解法求解一元二次方程2.5一元二次方程的根与系数的关系5第4周(9.21~9.25)2.6应用一元二次方程第二章练习课第二章测试与讲评5第5周(9.28~10.2)3.1用树状图或表格求概率3.2用频率估计概率3第6周(10.5~10.9)第三章练习课第三章测试与讲评2第7周(10.12~10.16)4.1成比例线段4.2平行线分线段成比例4.3相似多边形5第8周(10.19~10.23)4.4探索三角形相似的条件5第9周(10.26~10.30)4.5相似三角形判定定理的证明4.6利用相似三角形测高4.7相似三角形的性质5第10周(11.2~11.6)期中复习期中考试5第11周(11.9~11.13)4.8图形的位似第四章练习课第四章测试与讲评5第12周(11.16~11.20)5.1投影5.2视图5第13周(11.23~11.27)第五章练习课第五章测试与讲评6.1反比例函数5第14周(11.30~12.4)6.2反比例函数的图象与性质6.3反比例函数的应用第六章练习课5第15周(12.7~12.11)第六章测试与讲评1.1锐角三解函数1.230°45°60°角的三角函数值5第16周(12.14~12.18)1.3三角函数的计算1.4解直角三角形1.5三角函数的应用5第17周(12.21~12.25)1.6利用三角函数测高第一章练习课第一章测试与讲评5第18周(12.28~1.1)2.1二次函数2.2二次函数的图像和性质2.3确定二次函数的表达式5第19周(1.4~1.8)2.4二次函数的应用2.5二次函数与一元二次方程5第20周(1.11~1.15)第二章练习课第二章测试与讲评5第21周(1.18~1.22)期末复习期末考试5第一章:特殊平行四边形1.菱形的性质与判定(一)【教学目标】1.掌握菱形概念,知道菱形与平行四边形的关系.2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积.3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.【教学重点】菱形的性质1、2.【教学难点】菱形的性质及菱形知识的综合应用.【教学过程】一、课堂引入1.(复习)什么叫做平行四边形?2.(引入)我们已经学习了平行四边形请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.菱形定义:有一组邻边相等的平行四边形叫做菱形.【强调】菱形(1)是平行四边形;(2)一组邻边相等.让学生举一些日常生活中所见到过的菱形的例子.二、例题分析例1(教材P3例1)略例2(补充)已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.证明:∵四边形ABCD是菱形,∴CB=CD,CA平分∠BCD.∴∠BCE=∠DCE.又CE=CE,∴△BCE≌△COB(SAS).∴∠CBE=∠CDE.∵在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC∴∠AFD=∠CBE.例3(教材P8例3)略三、随堂练习二次备课1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.2.已知菱形的两条对角线分别是6cm和8cm,求菱形的周长和面积.3.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.4.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.四、课后练习1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周长为8cm,求菱形的高.2.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求(1)对角线AC的长度;(2)菱形ABCD的面积.【教学反思】二次备课第一章:特殊平行四边形1.菱形的性质与判定(二)【教学目标】1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.【教学重点】菱形的两个判定方法.【教学难点】判定方法的证明方法及运用.【教学过程】一、课堂引入1.复习(1)菱形的定义:一组邻边相等的平行四边形;(2)菱形的性质1菱形的四条边都相等;性质2菱形的对角线互相垂直;(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?3.【探究】用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?通过演示,容易得到:菱形判定方法1对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.通过教材P5下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:菱形判定方法2四边都相等的四边形是菱形.二、例题分析例1(教材P109的例3)略例2(补充)已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.证明:∵四边形ABCD是平行四边形,∴AE∥FC.∴∠1=∠2.又∠AOE=∠COF,AO=CO,∴△AOE≌△COF.∴EO=FO.∴四边形AFCE是平行四边形.又EF⊥AC,二次备课∴AFCE是菱形(对角线互相垂直的平行四边形是菱形).※例3(选讲)已知:如图,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.求证:四边形CEHF为菱形.略证:易证CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因为∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.所以,CF=CE=EH,CF∥EH,所以四边形CEHF为菱形.三、随堂练习1.填空:(1)对角线互相平分的四边形是;(2)对角线互相垂直平分的四边形是________;(3)对角线相等且互相平分的四边形是________;(4)两组对边分别平行,且对角线的四边形是菱形.2.画一个菱形,使它的两条对角线长分别为6cm、8cm.3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。四、课后练习1.下列条件中,能判定四边形是菱形的是().(A)两条对角线相等(B)两条对角线互相垂直(C)两条对角线相等且互相垂直(D)两条对角线互相垂直平分2.已知:如图,M是等腰三角形ABC底边BC上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求证:四边形MEND是菱形.3.做一做:设计一个由菱形组成的花边图案.花边的长为15cm,宽为4cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点.画出花边图形.【教学反思】二次备课第一章:特殊平行四边形2.矩形的性质与判定(一)【教学目标】1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.2.会初步运用矩形的概念和性质来解决有关问题.3.渗透运动联系、从量变到质变的观点.【教学重点】矩形的性质.【教学难点】矩形的性质的灵活应用.【教学过程】一、课堂引入1.展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?2.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义.矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象.【探究】在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.①随着∠α的变化,两条对角线的长度分别是怎样变化的?②当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?操作,思考、交流、归纳后得到矩形的性质.矩形性质1矩形的四个角都是直角.矩形性质2矩形的对角线相等.二次备课如图,在矩形ABCD中,AC、BD相交于点O,由性质2有AO=BO=CO=DO=12AC=12BD.因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.二、例习题分析例1已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知,可得△OAB是等边三角形,因此对角线的长度可求.例2(补充)已知:如图,矩形ABCD,AB长8cm,对角线比AD边长4cm.求AD的长及点A到BD的距离AE的长.例3(补充)已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.分析:CE、EF分别是BC,AE等线段上的一部分,若AF=BE,则问题解决,而证明AF=BE,只要证明△ABE≌△DFA即可,在矩形中容易构造全等的直角三角形.三、随堂练习(选择)(1)下列说法错误的是().(A)矩形的对角线互相平分(B)矩形的对角线相等(C)有一个角是直角的四边形是矩形(D)有一个角是直角的平行四边形叫做矩形(2)矩形的对角线把矩形分成的三角形中全等三角形一共有().(A)2对(B)4对(C)6对(D)8对四、课后练习1.(选择)矩形的两条对角线的夹角为60°,对角线长为15cm,较短边的长为().(A)12cm(B)10cm(C)7.5cm(D)5cm2.在直角三角形ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.3.已知:矩形ABCD中,BC=2AB,E是BC的中点,求证:EA⊥ED.【教学反思】二次备课第一章:特殊平行四边形2.矩形的性质与判定(二)【教学目标】1.理解并掌握矩形的判定方法.2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力。【教学重点】矩形的判定.【教学难点】矩形的判定及性质的综合应用.【教学过程】一、课堂引入1.什么叫做平行四边形?什么叫做矩形?2.矩形有哪些性质?3.矩形与平行四边形有什么共同之处?有什么不同之处?4.事例引入:小华想要做一个矩形相框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形相框吗?看看谁的方法可行?通过讨论得到矩形的判定方法.矩形判定方法1:对角钱相等的平行四边形是矩形.矩形判定方法2:有三个角是直角的四边形是矩形.(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)二、例习题分析例1(补充)下列各句判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形;(×)(2)

1 / 147
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功