一元二次方程的概念及解法教案(用心整理)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

课题一元二次方程的概念及解法授课时间:备课时间:教学目标1、掌握一元二次方程的概念及其一般形式,能指出一元二次方程的各项及其系数。2、能根据具体一元二次方程的特征,选择恰当的解法。重点、难点、考点1、一元二次方程的概念及解法。(重点)2、几种解法的灵活运用。(难点)教学内容一、复习旧课:让学生回顾昨日的知识点,评讲昨天的家庭作业二、针对性授课:教学过程一、一元二次方程的概念:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.归纳:(1)只含一个未知数x;(2)最高次数是2次的;(3)整式方程.一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.例2.将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.练习:判断下列方程是否为一元二次方程?(1)3x+2=5y-3(2)x2=4(3)3x2-5x=0(4)x2-4=(x+2)2(5)ax2+bx+c=0例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.练习:一、选择题1.在下列方程中,一元二次方程的个数是().①3x2+7=0②ax2+bx+c=0③(x-2)(x+5)=x2-1④3x2-5x=0A.1个B.2个C.3个D.4个2.方程2x2=3(x-6)化为一般形式后二次项系数、一次项系数和常数项分别为().A.2,3,-6B.2,-3,18C.2,-3,6D.2,3,63.px2-3x+p2-q=0是关于x的一元二次方程,则().A.p=1B.p0C.p≠0D.p为任意实数二、填空题1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.2.一元二次方程的一般形式是__________.3.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________.二、一元二次方程的解法(一)、直接开平方法1.填空(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+_____=(x+______)2.思考:二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?方程x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?例1:解方程:(1)(2x-1)2=5(2)x2+6x+9=2(3)x2-2x+4=-1练习:一、选择题1.若x2-4x+p=(x+q)2,那么p、q的值分别是().A.p=4,q=2B.p=4,q=-2C.p=-4,q=2D.p=-4,q=-22.方程3x2+9=0的根为().A.3B.-3C.±3D.无实数根二、填空题1.若8x2-16=0,则x的值是_________.2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.3.如果a、b为实数,满足34a+b2-12b+36=0,那么ab的值是_______.三、综合提高题1.解关于x的方程(x+m)2=n.(二)、配方法1、解下列方程(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p(p≥0).如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?2、要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5解一次方程→x1=2,x2=-8可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m,常为8m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.通过配方使左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程配方法解一元二次方程的一般步骤:(1)将方程化为一般形式;(2)二次项系数化为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.例1.用配方法解下列关于x的方程(1)x2-8x+1=0(2)x2-2x-12=0例2.解下列方程(1)2x2+1=3x(2)3x2-6x+4=0(3)(1+x)2+2(1+x)-4=0例3求证:无论y取何值时,代数式-3y2+8y-6恒小于0练习:一、选择题1.将二次三项式x2-4x+1配方后得().A.(x-2)2+3B.(x-2)2-3C.(x+2)2+3D.(x+2)2-32.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是().3.如果mx2+2(3-2m)x+3m-2=0(m≠0)的左边是一个关于x的完全平方式,则m等于().A.1B.-1C.1或9D.-1或94.配方法解方程2x2-43x-2=0应把它先变形为().A.(x-13)2=89B.(x-23)2=0C.(x-13)2=89D.(x-13)2=1095.下列方程中,一定有实数解的是().A.x2+1=0B.(2x+1)2=0C.(2x+1)2+3=0D.(12x-a)2=a6.已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z的值是().A.1B.2C.-1D.-2二、填空题1.方程x2+4x-5=0的解是________.2.代数式2221xxx的值为0,则x的值为________.3.如果16(x-y)2+40(x-y)+25=0,那么x与y的关系是________.4.已知(x+y)(x+y+2)-8=0,要求x+y的值,若设x+y=z,则原方程可变为_______,所以求出z的值即为x+y的值,所以x+y的值为______.三、综合提高题1.用配方法解方程.(1)9y2-18y-4=0(2)x2+3=23x2.已知:x2+4x+y2-6y+13=0,求222xyxy的值.5、求证:无论x、y取任何实数,多项式x2+y2-2x-4y+16的值总是正数(三)公式法一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a、b、c代入式子x=242bbaca就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。)(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根.A.x2-8x+(-4)2=31B.x2-8x+(-4)2=1C.x2+8x+42=1D.x2-4x+4=-11例1.用公式法解下列方程.(1)2x2-x-1=0(2)x2+1.5=-3x(3)x2-2x+12=0练习:一、选择题1.用公式法解方程4x2-12x=3,得到().A.x=362B.x=362C.x=3232D.x=32322.方程2x2+43x+62=0的根是().A.x1=2,x2=3B.x1=6,x2=2C.x1=22,x2=2D.x1=x2=-63.(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是().A.4B.-2C.4或-2D.-4或2二、填空题1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.2.当x=______时,代数式x2-8x+12的值是-4.3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.三、综合提高题1.用公式法解关于x的方程:x2-2ax-b2+a2=0.2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=-ba,x1·x2=ca;(四)因式分解法:若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,例如,x2-9=0,这个方程可变形为(x+3)(x-3)=0,要(x+3)(x-3)等于0,必须并且只需(x+3)等于0或(x-3)等于0,因此,解方程(x+3)(x-3)=0就相当于解方程x+3=0或x-3=0了,通过解这两个一次方程就可得到原方程的解.这种解一元二次方程的方法叫做因式分解法.因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程.其理论根据是:先把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.即A·B=0A=0或B=0例1.用因式分解法解下列方程.1、3x2-5x=02、025102xx3、025)2(10)2(2xx练习:一、选择题(1)方程(x-16)(x+8)=0的根是()A.x1=-16,x2=8B.x1=16,x2=-8C.x1=16,x2=8D.x1=-16,x2=-8(3)方程5x(x+3)=3(x+3)解为()A.x1=5/3,x2=3B.x=5/3C.x1=-5/3,x2=-3D.x1=5/3,x2=-3(4)方程(y-5)(y+2)=1的根为()A.y1=5,y2=-2B.y=5C.y=-2D.以上答案都不对二.填空题(1)方程(2x+1)2+3(2x+1)=0的解为__________.(2)方程(2y+1)2+3(2y+1)+2=0的解为__________.(3)关于x的方程x2+(m+n)x+mn=0的解为__________.(4)方程x(x-5)=5-x的解为__________三、综合提高题1、已知(x2+y2)(x2-1+y2)-12=0.求x2+y2的值.已知x2+3xy-4y2=0(y≠0),试求(x-y/(x+y)的值.(五)课堂测试:一、选用适当的方法解下列方程:2(x-1)2=82x2+4x=022510xx0812x4(2x+1)2=3(4x2-1)5)3)(1(xx03722xx(x-5)(x+3)+(x-2)(x+4)=49(x2-x+1)(x2-x+2)=120223)12(22xxxx3122x2+12x-15=0二、综合题:1、已知|x2-3xy-4y2|+0144222yxyx=0,求3x+6y的值。2、方程,m取何值时是一元二次方程,并求出此方程的解。五、家庭作业1、错题抄写2、家庭作业一页。课后反馈1,学生自我评价:2,家长签名:01)3()1(12xmxmm

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功