-2-高等数学(向量代数—无穷级数)知识点向量与空间几何向量:向量表示((a^b));向量运算(向量积);向量的方向和投影空间方程:曲面方程(旋转曲面和垂直柱面);直线方程(参数方程和投影方程)平面方程:点法式(法向量)、一般式、截距式;平面夹角和距离直线方程:一般式、对称式(方向向量)、参数式;直线夹角;平面交线(法向量积)切平面和切线:切线与法平面;切平面与法线多元函数微分学多元函数极限:趋近方式,等阶代换偏微分和全微分:高阶微分(连续则可等);复合函数求导(Jacobi行列式);多元函数极值:偏导数判定;拉格朗日乘数法(条件极值)重积分二重积分:直角坐标和极坐标;对称性;换元法三重积分:直角坐标、柱坐标和球坐标;对称性重积分的应用:曲面面积;质心;转动惯量;引力曲线与曲面积分曲线积分:弧长积分;坐标曲线积分(参数方程);格林公式面积积分:对面积积分;坐标面积积分;高斯公式无穷级数级数收敛:通项极限正项级数:调和级数;比较法和比较极限法;根值法;极限法;绝对收敛和条件收敛幂级数:收敛半径和收敛域;和函数;麦克劳林级数(二次展开)Fourier级数:傅里叶系数(高次三角函数积分);奇偶延拓;正弦和余弦级数;一般周期的傅里叶级数矢量分析与场论(空间场基础)方向导数与梯度方向导数:向量参数式;偏导数;方向余弦梯度(grad):方向导数的最值;梯度方向;物理意义(热导方向与电场方向)格林公式:曲线积分—二重积分;曲线方向与曲面方向全微分原函数:场的还原;折线积分通量与散度高斯公式:闭合曲面—三重积分;曲面外侧定向;曲面补齐;向量表达(通量)-3-散度(div):通量的体积元微分;物理意义(有源场(电场))环流量与旋度斯托克斯公式:闭合曲线—曲面积分;向量积定向;行列式表达;向量表达;物理意义(环通量)旋度(rot):行列式斯托克斯公式;物理意义(有旋场(磁场))第八章向量与解析几何向量代数定义定义与运算的几何表达在直角坐标系下的表示向量有大小、有方向.记作a或ABa(,,)xyzxyzaiajakaaa,,xxyyzzaprjaaprjaaprja模向量a的模记作aa222xyzaaa和差cabcab-cab,,xxyyzzababab单位向量0a,则aaeaae222(,,)xyzxyzaaaaaa方向余弦设a与,,xyz轴的夹角分别为,,,则方向余弦分别为cos,cos,coscosyxzaaaaaa,cos,coscosae(,cos,cos)222cos1+coscos点乘(数量积)cosbaba,为向量a与b的夹角zzyyxxbabababa叉乘(向量积)bacsinbac为向量a与b的夹角向量c与a,b都垂直zyxzyxbbbaaakjiba定理与公式垂直0abab0xxyyzzabababab平行//0abab//yzxxyzaaaabbbb交角余弦两向量夹角余弦babacos222222cosxxyyzzxyzxyzabababaaabbb投影向量a在非零向量b上的投影cos()babprjaaabb222xxyyzzbxyzabababprjabbb平面直线法向量{,,}nABC点),,(0000zyxM方向向量{,,}Tmnp点),,(0000zyxM-4-方程名称方程形式及特征方程名称方程形式及特征一般式0DCzByAx一般式0022221111DzCyBxADzCyBxA点法式0)()()(000zzCyyBxxA点向式pzznyymxx000三点式1112121213131310xxyyzzxxyyzzxxyyzz参数式ptzzntyymtxx000截距式1xyzabc两点式000101010xxyyzzxxyyzz面面垂直0212121CCBBAA线线垂直0212121ppnnmm面面平行212121CCBBAA线线平行212121ppnnmm线面垂直pCnBmA线面平行0CpBnAm点面距离),,(0000zyxM0DCzByAx面面距离10AxByCzD20AxByCzD222000CBADCzByAxd12222DDdABC面面夹角线线夹角线面夹角},,{1111CBAn},,{2222CBAn},,{1111pnms},,{2222pnms},,{pnms},,{CBAn222222212121212121||cosCBACBACCBBAA222222212121212121cospnmpnmppnnmm222222sinpnmCBACpBnAm空间曲线:()()()xtytzt,,,)(t切向量))(,)(,)((000tttT切“线”方程:)()()(000000tzztyytxx法平“面”方程:0))(()()()()(000000zztyytxxt()()yxzx切向量))(,)(,1(xxT切“线”方程:)()(100000xzzxyyxx法平“面”方程:0))(()()()(00000zzxyyxxx空间曲面:0),,(zyxF法向量000000000((,,),(,,),(,,))xyznFxyzFxyzFxyz切平“面”方程:000000000000(,,)()(,,)()(,,)()0xxxFxyzxxFxyzyyFxyzzz法“线“方程:),,(),,(),,(000000000000zyxFzzzyxFyyzyxFxxzyx-5-),(yxfz0000((,),(,),1)xynfxyfxy或0000((,),(,),1)xynfxyfxy切平“面”方程:0)())(,())(,(0000000zzyyyxfxxyxfyx法“线“方程:1),(),(0000000zzyxfyyyxfxxyx第十章重积分重积分积分类型计算方法典型例题二重积分d,DyxfI平面薄片的质量质量=面密度面积(1)利用直角坐标系X—型Dbaxxdyyxfdxdxdyyxf)()(21),(),(Y—型dcyyDdxyxfdydxdyyxf)()(21),(),(P141—例1、例3(2)利用极坐标系使用原则(1)积分区域的边界曲线易于用极坐标方程表示(含圆弧,直线段);(2)被积函数用极坐标变量表示较简单(含22()xy,为实数)21()()(cos,sin)(cos,sin)Dfdddfd0202P147—例5(3)利用积分区域的对称性与被积函数的奇偶性当D关于y轴对称时,(关于x轴对称时,有类似结论)110(,)(,)(,)2(,)(,)(,)(,)DfxyxfxyfxyIfxydxdyfxyxfxyfxyDD对于是奇函数,即对于是偶函数,即是的右半部分P141—例2应用该性质更方便计算步骤及注意事项1.画出积分区域2.选择坐标系标准:域边界应尽量多为坐标轴,被积函数关于坐标变量易分离-6-3.确定积分次序原则:积分区域分块少,累次积分好算为妙4.确定积分限方法:图示法先积一条线,后扫积分域5.计算要简便注意:充分利用对称性,奇偶性三重积分dvzyxfI),,(空间立体物的质量质量=密度面积(1)利用直角坐标截面法投影法投影bayxzyxzxyxyzzyxfyxVzyxf),(),()()(2121d),,(ddd),,(P159—例1P160—例2(2)利用柱面坐标cossinxryrzz相当于在投影法的基础上直角坐标转换成极坐标适用范围:○1积分区域表面用柱面坐标表示时方程简单;如旋转体○2被积函数用柱面坐标表示时变量易分离.如2222()()fxyfxz21()()(,,)ddd(cos,sin,)dbrarfxyzVzfzP161—例3(3)利用球面坐标cossincossinsinsincosxryrzr适用范围:○1积分域表面用球面坐标表示时方程简单;如,球体,锥体.○2被积函数用球面坐标表示时变量易分离.如,222()fxyz222111(,)2(,)dd(sincos,sinsin,cos)sindIfP165—10-(1)(4)利用积分区域的对称性与被积函数的奇偶性第十一章曲线积分与曲面积分曲线积分与曲面积分积分类型计算方法典型例题第一类曲线积分LdsyxfI),(曲形构件的质量质量=线密度弧长参数法(转化为定积分)(1):()LyxdtttttfI)(')('))(),((22(2)():()()xtLtytdxxyxyxfIba)('1))(,(2(3)()()rr()cos:()sinxrLyrdrrrrfI)(')()sin)(,cos)((22P189-例1P190-3dvrdrdd2sin-7-平面第二类曲线积分LQdyPdxI变力沿曲线所做的功(1)参数法(转化为定积分)():()()xtLtyt单调地从到ttttQtttPyQxPLd)}()](),([)()](),([{ddP196-例1、例2、例3、例4(2)利用格林公式(转化为二重积分)条件:①L封闭,分段光滑,有向(左手法则围成平面区域D)②P,Q具有一阶连续偏导数结论:dydxyPxQQdyPdxDL)(应用:助线不是封闭曲线,添加辅有瑕点,挖洞满足条件直接应用P205-例4P214-5(1)(4)(3)利用路径无关定理(特殊路径法)等价条件:①yPxQ②0LQdyPdx③LQdyPdx与路径无关,与起点、终点有关④QdyPdx具有原函数),(yxu(特殊路径法,偏积分法,凑微分法)P211-例5、例6、例7(4)两类曲线积分的联系LLdsQPQdyPdxI)coscos(空间第二类曲线积分LIPdxQdyRdz变力沿曲线所做的功(1)参数法(转化为定积分)dtttttRttttQttttPRdzQdyPdx)}()](),(),([)()](),(),([)()](),(),([{(2)利用斯托克斯公式(转化第二类曲面积分)条件:①L封闭,分段光滑,有向②P,Q,R具有一阶连续偏导数结论:dxdyypxQdzdxxRzPdydzzQyRRdzQdyPdxL)()()(应用:助线不是封闭曲线,添加辅满足条件直接应用P240-例1第一类曲面积分dvzyxfI),,(曲面薄片的质量质量=面密度面积投影法:),(yxzz投影到xoy面dxdyzzyxzyxfdvzyxfIxyDyx221)),(,,(),,(类似的还有投影到yoz面和zox面的公式P217-例1、例2-8-第二类曲面积分