九年级数学上册273反比例函数的应用趣味数学“反比例函数”与“闭眼打转问题”素材冀教版!

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1“反比例函数”与“闭眼打转问题”“反比例函数”与“闭眼打转问题”,是两件风马牛不相及的事情,怎么会扯上关系?同学们别急!看了下面这段故事,你会感受到反比例函数的“神奇力量”,你会觉得数学是那么的“酷”!相传公元1896年,挪威生理学家古德贝尔对闭眼打转的问题进行了深入的研究。他收集了大量事例后分析说:这一切都是由于人自身两条腿在作怪!长年累月养成的习惯,使每个人一只脚伸出的步子,要比另一只脚伸出的步子长一段微不足道的距离。而正是这一段很小的步差x,导致了这个人走出一个半径为y的大圈子!现在我们来研究一下x与y之间的函数关系:假定某人两脚踏线间相隔为d。很明显,当人在打圈子时,两只脚实际上走出了两个半径相差为d的同心圆。设该人平均步长为l。那么,一方面这个人外脚比内脚多走路程2()2()222ddyyd;另一方面,这段路程又等于这个人走一圈的步数与步差的乘积,即22()2ydxl,化简得2dlyx对一般的人,d=0.1米,l=0.7米,代入得0.14yx(米)这就是所求的迷路人打圈子的半径公式,它是一个反比例函数!假如设迷路人两脚差为0.1毫米,那么仅此微小的差异,就足以使他在大约三公里的范围内绕圈子!看到这里,你是否被神奇的反比例函数所折服!且慢,我们再来看一个有趣的游戏:在世界著名的水都威尼斯,有个马尔克广场。广场的一端有一座宽82米的雄伟教堂。教堂的前面是一片开阔地。这片开阔地经常吸引着四方游人到这里做一种奇特的游戏:把眼睛蒙上,然后从广场的一端向另一端教堂走去,看谁能到达教堂的正前面!奇怪的是,尽管这段距离只有175米,但却没有一名游客能幸运地做到这一点!全都走成了弧线,或左或右,偏斜到了一边!为什么是这样呢?我们就先来计算一下,当人们闭起眼睛,从广场一端中央的M点抵达教堂CD的最小的弧半径是多少。如下图,注意到矩形ABCD边175BC(米),41AMMB(米)。那么上述问题,无疑相当于几何中的以下命题:已知:在矩形ABCD中175BC(米),M为AB边的中点,41AMMB(米),求弧MC所在圆的半径。在解这个问题之前,先介绍一下同学们马上要学的勾股定理:直角三角形中,两直角边的平方和等于斜边的平方。(为什么有这个美妙的结论,请同学们预习接下来学习的内容)2下面我们一起来解决问题:如图,由于BOC是直角三角形,于是由勾股定理有222()(2)BCRRMBMBRMB即217541(241)R解这个方程,得394R这就是说,游人要想成功,他所走的弧线半径必须不小于394米。那么就让我们再计算一下,要达到上述要求,游人的两脚的步差需要什么限制。根据公式:0.14yx,因为394y,所以0.140.00035394x(米)=0.35(毫米)这表明游人的两只脚的步差必须小于0.35毫米,否则是不可能成功的!然而,在闭上眼睛的前提下,使两脚的步差这么小一般人是办不到的,这便是在游戏中为什么没有人能被蒙上眼睛走到教堂前面的道理。同学们,看到这里你是否觉得数学真的很有用!那么,让我们一起努力学习吧。

1 / 2
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功