2020考研数学一真题及解析(完整版)一、选择题:1~8小题,第小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上.1.x0时,下列无穷小阶数最高的是A.0xet21dtB.0xln1+t3dtC.sin20sindxttD.1cos30sindxtt1.答案:D解析:A.232001~3xxtxedttdtB.35322002ln1~5xxtdttdtxC.sin223001sin~3xxtdttdtxD.2311cos32200sin~xxtdttdt25122025xt5252152x2.设函数()fx在区间(-1,1)内有定义,且0lim()0,xfx则()A.当0()lim0,()0||xfxfxxx在处可导.B.当20()lim0,()0xfxfxxx在处可导.C.当0()()0lim0.||xfxfxxx在处可导时,D.当20()()0lim0.xfxfxxx在处可导时,2.答案:B解析:02000()()()()lim0lim0lim0,lim0||xxxxfxfxfxfxxxxx00()lim0,lim()0xxfxfxx00()(0)()limlim0(0)0xxfxffxfxx()fx在0x处可导选B3.设函数(,)fxy在点(0,0)处可微,(0,0)(0,0)0,,,1fffxyn且非零向量d与n垂直,则()A.22(,)(0,0)|(,,(,))|lim0xyxyfxyxy存在nB.22(,)(0,0)|(,,(,))|lim0xyxyfxyxy存在nC.22(,)(0,0)|(,,(,))|lim0xyxyfxyxy存在dD.22(,)(0,0)|(,,(,))|lim0xyxyfxyxyd3.答案:A解析:(,)(0,0)fxy在处可微.(0,0)0f=2200(,)(0,0)(0,0)(0,0)lim0xyxyfxyffxfyxy即2200(,)(0,0)(0,0)lim0xyxyfxyfxfyxy,,(,)(0,0)(0,0)(,)xynxyfxyfxfyfxy22(,)(0,0),,(,)lim0xynxyfxyxy存在选A.4.设R为幂级数1nnnar的收敛半径,r是实数,则()A.1nnnar发散时,||rRB.1nnnar发散时,||rRC.||rR时,1nnnar发散D.||rR时,1nnnar发散4.答案:A解析:∵R为幂级数1nnnax的收敛半径.∴1nnnax在(,)RR内必收敛.∴1nnnar发散时,||rR.∴选A.5.若矩阵A经初等列变换化成B,则()A.存在矩阵P,使得PA=BB.存在矩阵P,使得BP=AC.存在矩阵P,使得PB=AD.方程组Ax=0与Bx=0同解5.答案:B解析:A经初等列变换化成B.存在可逆矩阵1P使得1APB1111ABPPP令..ABPB选6.已知直线22211112:xaybcLabc与直线33322222:xaybcLabc相交于一点,法向量,1,2,3.iiiiaabic则A.1a可由23,aa线性表示B.2a可由13,aa线性表示C.3a可由12,aa线性表示D.123,,aaa线性无关6.答案:C解析:令1L的方程222111=xaybzctabc即有21212121=aaxybtbtzcc由2L的方程得32323223=aaxybtbtzcc由直线1L与2L相交得存在t使2132tt即312(1)tt,3可由12,线性表示,故应选C.7.设A,B,C为三个随机事件,且1()()(),()04PAPBPCPAB1()()12PACPBC,则A,B,C中恰有一个事件发生的概率为A.34B.23C.12D.5127.答案:D解析:()()()[()]PABCPABUCPAPABUC()()()()()()111004126PAPABACPAPABPACPABC()()()[()]()()()()111004126PBACPBAUCPBPBAUCPBPBAPBCPABC()()()[()]()()()()111104121212PCBAPCBUAPCPCUBUAPCPCBPCAPABC()()()()1115661212PABCABCABCPABCPABCPABC选择D8.设12,,,nXXX…为来自总体X的简单随机样本,其中1(0)(1),()2PXPXx表示标准正态分布函数,则利用中心极限定理可得100155iiPX的近似值为A.1(1)B.(1)C.1(2)D.(2)8.答案:B解析:由题意11,24EXDX1001001110050.10025iiiiEXXEXDXDX由中心极限定理1001~(50,25)iiXN∴1001001155555055(1)55iiiiXPXP故选择B二、填空题:9—14小题,每小题2分,共24分。请将解答写在答题纸指定位置上.9.011lim1ln(1)xxex9.解析:011lime1ln(1)xxx0ln(1)e1lim(e1)ln(1)xxxxx20ln(1)e1limxxxx01e1lim2xxxx110.设221ln(1)xtytt,则212|tdydx10.解析:2221d1d11dddd1tyyttttxtxtt1t2222ddd1ddddddddd1yytytttxtxxtt231tt得2212tdydx11.若函数()fx满足()()()0(0),(0),(0)fxafxfxafmfn且,则0()dfxx11.解析:特征方程为210a特征根为12,,则1212,1a,特征根120,000()d[()()]dfxxfxafxx0[()()]|fxafxnam12.设函数20(,)edxyxtfxyt,则2(1,1)fxy12.解析:232()eexxyxyfxxy332232=e3exyxyfyfxyxyx2(1,1)=e+3e4e.fxy13.行列式011011110110aaaa13.解析:2224201101101101111011011000011110111111000021214.00aaaaaaaaaaaaaaaaaaaaaaaaaa14.设X服从区间,22上的均匀分布,sinYX,则(,)CovXY14.解析:解1()220xfx其他cov(,)XYEXYEXEY(sin)(sin)EXXEXEX222222111sinsinxxdxxdxxdx2012sin0xxdx202()cosxdx22002coscosxxxdx20220sinx三、解答题:15~23小题,共94分.请将解答写在答题纸指定位置上.解答写出文字说明、证明过程或演算步骤.15.(本题满分10分)求函数33(,)8fxyxyxy的最大值15.解析:求一阶导可得22324fxyxfyxy令100601012fxxxfyyy可得求二阶导可得2222226148fffxyxxyy当0,00.1.0xyABC时.20ACB故不是极值.当11612xy时1.1.4.ABC2110.10,612ACBA故是极小值点极小值33111111,8661261212216f16.(本题满分10分)计算曲线积分222444LxyxyIdxdyxyxy,其中L是222xy,方向为逆时针方向16.解析:设22224,44xyxyPQxyxy则2222248(4)QPxyxyxyxy取路径222:4,Lxy方向为顺时针方向.222222222222222224444444441(4)()1111(1)22.2LLLLLDDDxyxydxdyxyxyxyxyxyxydxdydxdyxyxyxyxyQPdxdyxydxxydyxydxdyS则17.(本题满分10分)设数列{}na满足111,(1)12nnanana,证明:当||1x时幂级数1nnnax收敛,并求其和函数.17.证明:由111(1),12nnnanaa知0na则11211nnnaan,即1nnaa故{}na单调递减且01na,故nnnaxx当||1x时,1nnx绝对收敛,故1nnnax收敛.1111011111111()(1)(1)11211211()211()()2nnnnnnnnnnnnnnnnnnnnnnnnSxaxnaxnaxanaxnaxnaxaxxnaxSxxSxSx则1(1)()()12xSxSx即11()()2(1)1SxSxxx解得1()211Sxxcx又(0)0S故2c因此2()2.1Sxx18.(本题满分10分)设为曲面22224Zxyxy的下侧,()fx是连续函数,计算[()2][()2][()]Ixfxyxyydydzyfxyyxdzdxzfxyzdxdy18.解析:22zxy则2222,xyxyzzxyxy方向余弦为2222111cos,cos,cos222xyxyxy于是1222222222222222222222201011[()2][()2][()]d222dd24dd2sin4742432xyDDxyIxfxyxyyyfxyyxzfxyzSxyxyxyxyyxyxyxyxyyxyxyxyrdrdrdrdrr70.319.设函数()fx在区间[0,2]上具有连续导数,(0,2)(0)(2)