..2019年江苏省泰州市中考数学试卷(考试时间120分钟,满分150分)请注意:1.本试卷选择题和非选择题两个部分,2.所有试题的答案均填写在答题卡上,答案写在试卷上无效,3.作图必须用2B铅笔,并请加黑加粗。第一部分选择题(共18分)一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.﹣1的相反数是()A.±1B.﹣1C.0D.12.下列图形中的轴对称图形是()3.方程2x2+6x-1=0的两根为x1、x2,则x1+x2等于()A.-6B.6C.-3D.34.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如下表()若抛掷硬币的次数为1000,则“下面朝上”的频数最接近A.200B.300C.500D.8005.如图所示的网格由边长相同的小正方形组成,点A、B、C、D、E、F、G在小正方形的顶点上,则△ABC的重心是()A.点DB.点EC.点FD.点G6.若2a-3b=-1,则代数式4a2-6ab+3b的值为()A.-1B.1C.2D.3..第二部分非选择题(共132分)二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.)7.计算:(π-1)0=.8.若分式有意义,则x的取值范围是.9.2019年5月28日,我国“科学”号远洋科考船在最深约为11000m的马里亚纳海沟南侧发现了近10片珊瑚林,将11000用科学记数法表示为.10.不等式组的解集为.11.八边形的内角和为.12.命题“三角形的三个内角中至少有两个锐角”是(填“真命题”或“假命题”).13.根据某商场2018年四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为1000万元,则该商场全年的营业额为万元.14.若关于x的方程x2+2x+m=0有两个不相等的实数根,则m的取值范围是.15.如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的周长为cm.16.如图,⊙O的半径为5,点P在⊙O上,点A在⊙O内,且AP=3,过点A作AP的垂线交于⊙O点B、C.设PB=x,PC=y,则y与x的函数表达式为.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本题满分12分)(1)计算:(8-21)×6;(2)解方程:121x31yx2333252xxxx..18.(本题满分8分)PM2.5是指空气中直径小于或等于2.5PM的颗粒物,它对人体健康和大气环境造成不良影响.下表是根据(全国城市空气质量报告)中的部分数据制作的统计表,根据统计表回答下列问题:2017年、2018年7~12月全国338个地区及以上城市平均浓度统计表:(单位:pm/m2)(1)2018年7~12月PM2.5平均浓度的中位数为pm/m2;(2)“扇形统计图”和“折线统计图”中,更能直观地反映2018年7~12月PM2.5平均浓度变化过程和趋势的统计图是;(3)某同学观察统计表后说:“2018年7~12月与2017年同期相比,空气质量有所改善”。请你用一句话说明该同学得出这个结论的理由。19.(本题满分8分)小明代表学校参加“我和我的祖国”主题宣传教育活动,该活动分为两个阶段,第一阶段有“歌曲演唱”、“书法展示”、“器乐独奏”3个项目(依次用A、B、C表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用D、E表示),参加人员在每个阶段各随机抽取一个项目完成.用画树状图或列表的方法列出小明参加项目的所有等可能的结果,并求小明恰好抽中B、D两个项目的概率.20.(本题满分8分)如图,△ABC中,∠C=900,AC=4,BC=8,(1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交BC于点D,求BD的长.21.(本题满分10分)某体育看台侧面的示意图如图所示,观众区AC的坡月份年份7891011122017年2724303851652018年232425364953CAB第20题图..度i=1∶2,顶端C离水平地面AB的高度为10m,从顶棚的D处看E处的仰角α=18030′,竖直的立杆上C、D两点间的距离为4m,E处到观众区底端A处的水平距离AF为3m,求:(1)观众区的水平宽度AB;(2)顶棚的E处离地面的高度EF.(sin18030′≈0.32,tan18030′≈0.33,结果精确到0.1m)22.(本题满分10分)如图,在平面直角坐标系xoy中,二次函数图像的顶点坐标为(4,-3),该图像与x轴相交于点A、B,与y轴相交于点C,其中点A的横坐标为1.(1)求该二次函数的表达式;(2)求tan∠ABC.23.(本题满分10分)小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于100kg,超过300kg时,所有这种水果的批发单价均为3元/kg.图中折线表示批发单价y(元/kg)与质量x(kg)的函数关系.(1)求图中线段AB所在直线的函数表达式;(2)小李用800元一次可以批发这种水果的质量是多少?24.(本题满分10分)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为弧AC的中点,过点D作DE∥AC,交BC的延长yxAOCBDAO..线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为5,AB=8,求CE的长.25.(本题满分12分)如图,线段AB=8,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP.直线CE与线段AB相交于点F(点F与点A、B不重合).(1)求证:△AEP≌△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)求△AEF的周长.26.(本题满分14分)已知一次函数y1=kx+n(n0)和反比例函数y2=(m0,x0),(1)如图1,若n=-2,且函数y1、y2的图像都经过点A(3,4).PGFDCBAE第25题图xm..①求m、k的值;②直接写出当y1y2时x的范围;(2)如图2,过点P(1,0)作y轴的平行线l与函数y2的图像相交于点B,与反比例函数y3=(x0)的图像相交于点C.①若k=2,直线l与函数y1的图像相交于点D,当点B、C、D中的一点到另外两点的距离相等时,求m-n的值;②过点B作x轴的平行线与函数y1的图像相交与点E,当m-n的值取不大于1的任意实数时,点B、C间的距离与点B、E间的距离之和d始终是一个定值,求此时k的值及定值d.xn..2019年江苏省泰州市中考数学试卷参考答案一、选择题1.D.2.B.3.C.4.C.5.A.6.B.二、填空题7.1.8.x≠0.59.1.1×104.10.x﹣3.11.1080.12.真命题.13.5000.14.m1.15.6π.16.y=三、解答题17.(1)33(2)x=418.(1)36.(2)折线统计图,(3)略.19..20.(1)略;(2)5.21.(1)AB=20m;(2)EF=21.6m.(2).22.(1)y=23.(1)y=﹣0.01x+6(100≤x≤300).(2)200kg.24.(1)DE为⊙O的切线,理由:连接OD,∵AC为⊙O的直径,D为弧AC的中点,∴弧AD=弧CD,∴∠AOD=∠COD=90°,又∵DE∥AC,∴∠EDO=∠AOD=90°,∴DE为⊙O的切线.x303738312xx..(2)解:∵DE∥AC,∴∠EDO=∠ACD,∵∠ACD=∠ABD,∵∠DCE=∠BAD,∴△DCE∽△BAD,∴∵半径为5,∴AC=10,∵D为弧AC的中点,∴AD=CD=52∴∴CE=25.(1)证明:∵四边形APCD正方形,∴DP平分∠APC,PC=PA,∴∠APD=∠CPD=45°,∴△AEP≌△CEP.(2)CF⊥AB.理由如下:∵△AEP≌△CEP,∴∠EAP=∠ECP,∵∠EAP=∠BAP.∴∠BAP=∠FCP,∵∠FCP+∠CMP=90°,∠AMF=∠CMP,∴∠AMF+∠PAB=90°,∴∠AFM=90°,∴CF⊥AB.(3)过点C作CN⊥PB.可证得△PCN≌△APB,ABDCADCE82525CE425PGFDCBAE第25题图MN..∴CN=PB=BF,PN=AB,∵△AEP≌△CEP,∴AE=CE,∴AE+EF+AF=CE+EF+AF=BN+AF=PN+PB+AF=AB+CN+AF=AB+BF+AF=2AB=16.26.(1)①∵y2=(m0,x0),过点A(3,4).∴4=∴m=12.又∵点A(3,4)y1=kx+n的图象上,且n=-2,∴4=3k-2,∴k=2.②由图像可知当x3时,y1y2.(2)①∵直线l过点P(1,0),∴D(1,2+n),B(1,m),C(1,n),又∵点B、C、D中的一点到另外两点的距离相等,∴BD=BC,或BD=DC;∴2+n﹣m=m﹣n;或m﹣(2+n)=2+n﹣n;∴m﹣n=1或m﹣n=4.②由题意可知,B(1,m),C(1,n),当y1=m时,kx+n=m,xm3mknm..∴x=即点E的横坐标为∴d=BC+BE==∵m-n的值取不大于1的任意实数时,d始终是一个定值,∴∴k=1,从而d=1.knmknmnm11)11)((knm011k