资料.第一章习题1.设测量样品的平均计数率是5计数/s,使用泊松分布公式确定在任1s内得到计数小于或等于2个的概率。解:051525(,)!5(0;5)0.00670!5(0;5)0.03371!5(0;5)0.08422!NNrrrrNPNNeNPePePe在1秒内小于或等于2的概率为:(0;5)(1;5)(2;5)0.00670.03370.08420.1246rrrPPP2.若某时间内的真计数值为100个计数,求得到计数为104个的概率,并求出计数值落在90-104范围内的概率。解:高斯分布公式2222)(22)(2121)(mnmmneemnP1002m2222)104(22)(2121)104(mmmneemP将数据化为标准正态分布变量11010090)90(x4.010100104)104(x查表x=1,3413.0)(x,x=0.4,1554.0)(x计数值落在90-104范围内的概率为0.4967资料.3.本底计数率是500±20min-1,样品计数率是750±20min-1,求净计数率及误差。解:tn本底测量的时间为:min25205002bbbnt样品测量时间为:min35207002sssnt样品净计数率为:1min200500700bbsstntnn净计数率误差为:1min640bsbbsstntn此测量的净计数率为:1min62004.测样品8min得平均计数率25min-1,测本底4min得平均计数率18min-1,求样品净计数率及误差。解:1min71825bbsstntnn1min76.2418825bbsstntn资料.测量结果:1min76.27请同学们注意:,在核物理的测量中误差比测量结果还大的情况时有发生。5.对样品测量7次,每次测5min,计数值如下:209,217,248,235,224,233,223。求平均计数率及误差。1min4.4557223233224235248217209ktNni12min14.1354.45)(ktNi测量结果:1min14.14.456.某放射性测量中,测得样品计数率约1000min-1,本底计数率约250min-1,若要求测量误差≤1%,测量样品和本底的时间各取多少?解:由题意知42501000bsnn,250bn,%1nv,带入22min)1/(1bsnbnnvnT式,得min40minT。再代入Tnnnntbsbss/1/Tnntbsb/11式,得min27st,min13bt。第二章习题4.4MeV的α粒子和1MeV的质子,它们在同一物质中的能量损失率和射程是否相同?为什么?解:由于重带电粒子在物质中的能量损失率与入射粒子的速度有关,与入射粒子质量无关,与入射粒子的电荷数的平方成正比,因此4MeV的α粒子和1MeV的质子在同一种物质中的能量损失率不同,但其射程相同。资料.5.如果已知质子在某一物质中的射程、能量关系曲线,能否从这曲线求得某一能量的d,t在同一物质中的射程?答:能,带电粒子的能量损失率与(1/v2)有关而与粒子质量无关,设d,t的能量为E,设质子的质量为m,对于d核有E=(1/2)2mv2,v2=E/m,则再次速度下的质子的能量为E’=(1/2)mv2=E/2,所以在质子的能量射程关系曲线上找到E/2所对应的射程即为具有能量E的d核所具有的射程;同样道理可计算t核的射程为E/3位置处所对应的射程。8.10MeV的氘核与10MeV的电子穿过薄铅片时,它们的辐射损失率之比是多少?20MeV的电子通过铝时,辐射损失和电离损失之比是多少?解:8.1:222raddEzZNEdxm10MeV的氘核质量为1887MeV,10MeV的电子质量为10.511MeV辐射损失率与(1/m2)成正比,因此二者的能量损失率之比为2_252_0.511()3.102101887radDeDradedEdxmdEmdx资料.8.2:20822.05800800radiondEEzdxdEdx9.一能量为2.04MeV准直光子束,穿过薄铅片,在20度方向测量次级电子,问在该方向发射的康普顿散射光子和康普顿反冲电子的能量分别是多少?解:光电子能量K层L层的能量分别为E2.040.08811.9519E2.040.0152.025erkerlEBMeVEBMeV)cos1()cos1()(202hcmhEe2)1(20tgcmhctg20时,MeVh04.2,MeVcm511.020得65.575504.02tg反冲电子能量:MeVhcmhEe326.1)cos1()cos1()(202当20时MeVhcmhEe3958.0)cos1()cos1()(202MeVMeVMeVEehh644.13958.004.211.某一能量的γ射线的线性吸收系数为0.6cm-1,它的质量吸收系数和原子的吸收截面是多少?这γ射线的能量是多少?按防护要求,源放在容器中,要用多少厚度的铅容器才能使容器外的γ强度减为源强的1/1000?资料.解:铅的原子序数:82,原子量:A=207.2g.mol-1,密度:ρ=11.34g.cm3,Na=6.022×1023mol-1,设铅的厚度为t,线性吸收系数为μ,质量厚度为tm,质量吸收系数为μm,由γ射线的吸收公式有:}exp{}exp{00mmtItII有mmtt,又ttm,所以有gcmcmgcmm/0529.0.34.116.0/231从铅吸收系数射线能量图中可以看到,对应吸收系数的射线能量在1MeV左右或者在10MeV左右,由N可以得到2231233111082.110022.634.112.2076.0cmmolcmgmolgcmNaANaANanN又228101mb则bmbcmmcmcm2.181011011082.11082.1228242223223按照防护要求资料.}exp{1000/00tIII,则有cmt51.11)10ln(3)10ln(3所以要对此射线做屏蔽的话需要11.51cm厚的铅板。第三章习题1.活度为4000Bq的210Po源,若放射的α粒子径迹全部落在充氩电离室的灵敏区中,求饱和电流。解:_619105.31040001.61026.41.2810cEIAeA2.活度为5550Bq的14Cβ线源(β射线的平均能量为50keV),置于充Ar的4π电离室内,若全部粒子的能量都消耗在电离室内,求饱和电流是多少?解:由已知条件可得:_319501055501.61026.4cEIAe=121.6810A(由于是4π电离室,且电离室对β的本征效率100%,因此总=100%)4.设G-M计数器的气体放大系数M≈2×108,定标器的触发阈为0.25V,问电路允许的输入电容为多大?解:pFCVCCMNeCQV1281028.125.0106.11102101985.设在平行板电离室中α粒子的径迹如图所示,径迹长度为l,假设沿径迹各处的比电离S为常数,且电子的漂移速度W-亦为常数,试求电子的电流脉冲。解:(1)当ott0时,oDLcostwθ,资料.eNLItwD()=;(2)当0maxttt时,exNItwd()=,由三角形相似,可推知,Dtwxcosθ,因此,NewItDtwDcos()=()θ;(3)当maxtt时,maxdtw,It()=0。6.为什么正比计器和G-M计数器的中央阳极必须是正极?答案:只有当正比计数器和G-M计数器的中央丝极为正极时,电子才可能在向丝极运动过程中受外加电场的加速,进而在距丝极为0r的区域内发生雪崩过程,这是正比计数器和G-M计数器的最基本过程。7.试计算充氩脉冲电离室和正比计数器对5MeVα粒子最佳分辨率。解:充氩脉冲电离室的能量分辨率:%3.03.26/1053.036.2./3.036.236.260WENF正比计数器的能量分辨率068.036.2NF式中0N为入射粒子在灵敏体积内产生的离子对数560109.13.26105WEN取法诺因子3.0F%5.0109.168.03.036.268.036.250NF第四章习题1.试计算24Na-2.76MeVγ在NaI(T1)单晶γ谱仪测到的能谱图上,康普顿边缘与单光子逃逸峰之间的相对位置。解:康普顿边缘,即最大反冲电子能量:资料.MeVhcmhEe53.276.22511.0176.22120max,单光子逃逸峰:MeVEs25.2511.076.2相对位置:ΔE=2.53Mev-2.25Mev=0.28Mev2.试详细解析上题γ射线在闪烁体中可产生哪些次级过程(一直把γ能量分解到全部成为电子的动能)。解:次级效应:光电效应(光电峰或全能峰);康普顿效应(康普顿坪);电子对生成效应(双逃逸峰)。上述过程的累计效应形成的全能峰;单逃逸峰。以级联过程(如γ-γ等)为主的和峰。3.结合第一章学过的知识,试定性分析,用一块塑料闪烁体配以光电倍增管组成的探头,测量到的0.662MeVγ谱形状和NaI(Tl)测到的有何不同?解:由于塑料闪烁体有效原子序数Z、密度ρ及发光效率均低于NaI(T1)闪烁晶体,对测得的0.662MeVγ射线谱的形状,其总谱面积相应的计数、峰总比、全能峰的能量分辨率均比NaI(T1)闪烁晶体差,甚至可能没有明显的全能峰。8.试解释0.662MeVγNaI(T1)探头能量分辨率优于BGO闪烁探测器的原因。两者对γ的探测效率相差很大,为什么?解:NaI(T1)闪烁探测器的能量分辨率优于BGO闪烁探测器是由于前者的发光效率明显优于后者,BGO仅为NaI(T1)的8%。而后者的密度和有效原子序数则优于前者。9.用一片薄的ZnS(Ag)闪烁体探测210Poα粒子,并用人眼来直接观察闪烁发光。假定人眼在暗室里只能看到至少包含10只光子的闪光,已知人的瞳孔直径为3mm,问人眼离闪烁体距离多少才能看到引起的闪光?解:mmhRhhhvCnpEn58104)1(2%1303026.0103.5104)cos1(2%1303026.0103.5104%130226610.试定性分析朔料闪烁体与NaI(T1)所测0.662MeVγ的谱型有什么不同。若C发光=0.13,而远型P、M管的光收集效率0.35,D1的光电子收集效率接近100%,资料.光阴极的量子效率0.22,求NaI(T1)对0.662MeV的能量分辨率。解:由γ与物质几率与原子序数的关系知道,朔料闪烁探测器的朔料闪烁体是碳氢化合物,原子序数很低,0.662MeV的γ射线只能与它发生康普顿散射,所以只有康普顿连续谱。而NaI(T1)闪烁谱仪测的0.662MeV的γ谱,除了康普顿连续谱外还有117Cs的子体137Ba的KX射线峰,反散射峰和全能峰。NaI(T1)对0.662MeV的全能峰能量分辨率为:2122221()12.355()2.355{()[1()(())]}PMCCVPMVCnnnCC光光光子光光子光子光子光光第二项和第三项对的贡献均为4%。第一项:由21161()0.04812561