第七章马尔柯夫预测法(经济预测与决策-兰州大学,刘书琪)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

经济预测与决策经济预测与决策第七章马尔柯夫预测法本章学习目的与要求通过本章的学习,了解马尔柯夫预测法的基本概念,运用马尔柯夫预测法进行市场销售预测、市场占有率预测。本章学习重点和难点重点是运用马尔柯夫预测法进行市场销售预测、市场占有率预测。难点是稳定状态市场占有率预测。本章内容提示第一节马尔柯夫过程分析的基本原理第二节马尔柯夫预测法的分析步骤第三节市场占有率预测马尔柯夫预测法马尔柯夫预测法是应用概率论中马尔柯夫链的理论和方法研究分析有关经济现象的现状及变化规律,并籍此预测未状况的预测方法。马尔柯夫过程对于一个系统,在由一种状态随机地转移至另一种状态的转移过程中,存在着转移概率,这种转移概率可以依据其前一种状态推算出来,而与该系统的原始状态和此次转移以前的有限次或无限次转移无关,系统的这种由一种状态至另一种状态的转移过程为马尔柯夫过程,其整体转移过程称为马尔柯夫链。马尔柯夫分析对于某一预测对象的马尔柯夫过程或马尔柯夫链的运动、变化进行研究分析,进而推测预测对象的未来状况和变化趋势的工作过程,称为马尔柯夫分析。第一节马尔柯夫过程分析的基本原理一、概率向量二、概率矩阵三、系统的稳定状态四、状态转移概率矩阵一、概率向量任意一个行向量U,如果内部各元素均非负,并且总和为1,则此向量称为概率向量。概率向量中的各元素,可以用整数、分数、小数或百分数表示。二、概率矩阵在一个nn矩阵P中,对于任意一个元素Pij均有Pij0(i=1,2,……,n;j=1,2,……,n)。并且Pi1+Pi2+……+Pin=1,则矩阵P叫做概率矩阵。即,由概率行向量构成的方阵。概率矩阵性质:1.如果A和B皆为概率矩阵,则乘积AB亦为概率矩阵。从而推论P的m次方幂Pm也是概率矩阵。概率矩阵性质:2.若概率矩阵P的有限次方幂Pm的所有元素均为正(非零非负),则P为正规概率矩阵。如概率矩阵:A2及Am(m2)中各元素均为正值,所以A为正规矩阵。但是,如果Am中有为零的元素存在,则A不是正规概率矩阵。概率矩阵性质:3.任意非零行向量U=(u1,u2,……,un),乘以某一方阵A所得的结果仍然为U,则称U为方阵A的固定点,或固定向量。记作UA=U。对于正规概率矩阵P和概率向量U,如果UP=U成立,则称U为P的固定概率向量。并且P只有一个固定概率向量。例设P的固定概率向量为U=(x1-x),则有:UP=U,所以U=(1/32/3),为P的唯一的固定概率向量。2/11/210P已知概率矩阵三、系统的稳定状态一个马尔柯夫链如果是正规的,根据以上讨论可知,通过状态转移可以使系统达到某一稳定状态。在这种情况下,处于状态i的概率如用Si表示,则系统整体的状态可用下面的概率向量来表示:S=(S1,S2,……,Sn)系统的稳定状态系统的稳定状态是指系统即使再经过一步状态转移,其状态概率仍保持不变的状态。即:SP=S式中:P是反映状态转移的正规概率矩阵,S称为对P的稳定状态概率向量。若知正规概率矩阵P,就可以根据以上关系式求出系统的稳定状态概率向量S。求稳定状态概率向量若已知概率矩阵所求的稳定状态概率向量S=(S1,S2,……,Sn)。nn2n1nn22221n11211PPPPPPPPPP根据公式有:根据公式有:并且S1+S2+……+Sn=1)SSS(PPPPPPPPP)SSS(n21nn2n1nn22221n11211n21从而有:P11S1+P21S2+……+Pn1Sn=S1P12S1+P22S2+……+Pn2Sn=S2………………P1nS1+P2nS2+……+PnnSn=SnS1+S2+……+Sn=1由前n个方程中去掉一个不独立的方程,求解联立方程组,解得S1、S2、……、Sn。四、状态转移概率矩阵如果系统的状态共有n个,系统的状态i一次转移到状态j的概率为Pij,则系统一次转移概率的全体组成一个矩阵,称为状态转移概率矩阵,记为:P。矩阵的每一行为一概率向量,它表示由状态i转移到其它状态的概率。多步转移概率矩阵如果系统的状态不止经过一次转移,而是经过多次转移,则可用多步转移概率矩阵来描述。设系统的状态经过K次转移,则用K步转移概率矩阵来描述。设K步转移概率矩阵为P(K),即:)K(nn)K(2n)K(1n)K(n2)K(22)K(21)K(n1)K(12)K(11(K)PPPPPPPPPP由定义可知:P(K)=P(K-1)P=P(K-2)P2=P(K-3)P3……=P(K-K+1)PK-1=PPK-1=PK即,K步转移概率矩阵就是一步转移概率矩阵的K次方。S(K)的计算设系统互不相容的状态有n个,系统的初始状态用概率向量S(0)表示,则:经过一次转移,系统达到S(1)状态,则有:S(1)=S(0)P经过二次转移,系统达到S(2)状态,则有:S(2)=S(1)P=S(0)P2S(K)的计算依此类推,可得递推关系式:S(3)=S(2)P=S(0)P3……S(K)=S(0)PK即经过K步转移后的状态取决于转移前的初始状态S(0),一步转移概率矩阵P和转移的次数K。表示成矩阵形式:Knn2n1nn22221n11211)0(n)0(2)0(1(K)PPPPPPPPP)SSS(S第二节马尔柯夫预测法的分析步骤马尔柯夫链作为一种基本的预测模型,用来预测客观经济事件的未来状态。当分析研究由一种状态转移为另一种状态时,可以使用这种模型。应用条件应用马尔柯夫预测法进行预测时,首先必须将研究的问题归纳成独立的状态;其次是要确定经过一个时期后,时间由一种状态转变为另一种状态的概率,并且这种概率必须满足下列条件:1.只与目前状态有关;2.与具体的时间周期无关;3.预测期间,状态的个数必须保持不变。步骤如果研究的问题符合上述条件,则构成一阶马尔柯夫链,并可以据此建立预测模型,进行预测。具体步骤如下:第一步,确定系统的状态;第二步,确定转移概率矩阵;第三步,进行预测。例7-1某公司将最近20个月的商品销售额统计如下,试预测第21个月的商品销售额。表7-1各月商品销售额单位:万元月数12345678销售额404580120110384050月数910111213141516销售额62901101301401205570月数17181920销售额4580110120解:划分状态。按销售额多少作为划分状态的标准。状态1——滞销:销售额60万元;状态2——平销:60万元销售额100万元;状态3——畅销:销售额100万元。则各状态出现的次数Mi为:M1=7;M2=5;M3=8。根据统计数据计算比例数,建立状态转概率矩阵。由状态i转移为状态j的次数记为Mij,则有:M11=3;M12=4;M13=0;M21=1;M22=1;M23=3;M31=2;M32=0;M33=5。在计算时,最后一个数据转移到哪个状态时未知的,所以不参加计算。转移概率以转移次数Mij与状态次数Mi之比作为转移概率,则转移概率Pij=Mij/Mi。各转移概率为:P11=3/7;P12=4/7;P13=0;P21=1/5;P22=1/5;P23=3/5;P31=2/7;P32=0;P33=5/7。预测第21月的销售额因为第20月的销售属状态3,而状态3经过一步转移达到状态1、2、3的概率分别为2/7、0、5/7,P33P31P32,所以第21月仍处于状态3的概率最大,即销售额超过100万元的可能性最大。第三节市场占有率预测在市场竞争条件下,企业向市场提供的商品份额占市场总份额的比例为企业该商品的市场占有率。市场占有率的预测是企业经营管理中的一项重要工作。下面利用马尔柯夫预测法进行关于市场占有率的预测的分析。条件设市场中提供某种商品的厂商共有n家。当前的市场占有率,即本期市场占有率为:用Pij代表经过一个时期后i厂商丧失的顾客转移到j厂商的概率,或j厂商得到由i厂商转来的顾客的概率。特别是当i=j时,Pij代表i厂商保留上期顾客的概率。这样Pij即为市场占有率的转移概率。转移概率矩阵对于整个市场中各厂商的顾客的转移概率,可用转移概率矩阵表示:PPPPPPPPPPnn2n1nn22221n11211市场占有率对于未来一个时期的市场占有率,有:nn)t(n2n)t(21n)t(11)(tnn2)t(n22)t(212)t(11)(t2n1)t(n21)t(211)t(11)(t1PSPSPSSPSPSPSSPSPSPSS上式表明,对于某一厂商下期市场占有率,包括自己保留下来的顾客和从其它厂商转来的顾客两部分占有率构成。将上式写成矩阵形式,有:nn2n1nn22221n11211)t(n)t(2)t(1)1t(n)1t(2)1t(1PPPPPPPPP)SSS()SSS(结论即:S(t+1)=S(t)P下期市场占有率取决于本期市场占有率和转移概率。同理,若S(t-1)表示上期市场占有率,S(t)表示本期市场占有率,则S(t)=S(t-1)P。本期市场占有率取决于上期市场占有率和转移概率,而与上期以前时期的市场占有率无关。,对市场占有率的预测是符合马尔柯夫原理的,因此可以利用马尔柯夫的理论和方法进行市场占有率的预测。K期市场占有率的预测设当前状态为初始状态,那么对于下一期市场占有率的预测,可以看成是在当前状态下经过一步转移所达到的状态。即:S(1)=S(0)P。若假定各期的转移概率不变,则那么对于下K期市场占有率的预测,可以看成是在当前状态下经过K步转移所达到的状态。即:S(K)=S(0)PK。例7-2已知市场上有A、B、C三种品牌的洗衣粉,上月的市场占有率分布为(0.30.40.3),并且转移概率矩阵为:试求本月和下月的市场占有率。8.01.00.12.07.00.12.02.00.6P解:依题意,设上月市场占有率为初始概率向量,即S(0)=(0.30.40.3),则本月市场占有率为S(1),下月市场占有率为S(2),由马尔柯夫预测法有:本月市场占有率S(1)=S(0)P=(0.250.370.38)下月市场占有率S(2)=S(1)P=(0.2250.3470.428)计算结果表明A、B、C三种品牌的洗衣粉,本月的市场占有率分别为:25%,37%和38%;下月的市场占有率分别为:22.5%,34.7%和42.8%。S(2)的计算亦可采用下式S(2)=S(1)P=S(0)P2即可认为是在初始状态经过二步转移后所达到的状态。那么对于K个时期后的市场占有率的预测,则可由初始状态S(0)与市场的转移概率矩阵P的K次方的乘积求得。即:S(K)=S(0)PK。例7-3有A、B、C三家企业的同种产品上个月在某地区市场上的占有率分别为:052、030、018。根据市场调查情况,每1000户顾客中分别购买A、B、C三家企业产品的变化情况如表7-3。试用马尔柯夫预测法分析,若按目前趋势发展下去,三家企业产品占有率的状况。表7-3企业占有顾客变化情况单位:人企业上月占有顾客数本月流动情况ABCA52031215652B30010510590C1801836126本月占有顾客数435297268解:1.确定初始状态。以上月各企业的市场占有率为初始状态,S(0)=(0.520.300.18)。2.确定转移概率矩阵。转移概率矩阵可以反映企业现有顾客在下一周期仍购买该企业产品的顾客人数的百分比,即保有率;和在下一周期转向购买其它企业产品顾客人数的百分比,即转出率。根据顾客人数转移的数据,计算出保有率和转出率,作为转移概率,组成转移概率矩阵。表

1 / 64
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功