.............湖北省武汉市2017年中考数学试题第Ⅰ卷(选择题共30分)一、选择题(共10小题,每小题3分,共30分)1.计算的结果为()A.6B.-6C.18D.-18【答案】A.【解析】试题解析:∵=6故选A.考点:算术平方根.2.若代数式在实数范围内有意义,则实数的取值范围为()A.B.C.D.【答案】D.考点:分式有意义的条件.3.下列计算的结果是的为()A.B.C.D.【答案】C.【解析】试题解析:A.=x8,该选项错误;B.与不能合并,该选项错误;C.=,该选项正确;.............D.=x6,该选项错误.故选C.考点:1.同底数幂的除法;2.同底数幂的乘法;3.积的乘方与幂的乘方.4.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示.成绩/1.501.601.651.701.751.80人数232341则这些运动员成绩的中位数,众数分别为()A.1.65,1.70B.1.65,1.75C.1.70,1.75D.1.70,1.70【答案】C.【解析】考点:1.中位数;2.众数.5.计算的结果为()A.B.C.D.【答案】B.【解析】试题解析:=x2+2x+x+2=x2+3x+2.故选B.考点:多项式乘以多项式6.点关于轴对称的坐标为()A.B.C.D.【答案】B..............【解析】试题解析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得:点A(-3,2)关于y轴对称的坐标为(3,2).故选B.考点:关于x轴、y轴对称的点的坐标特征7.某物体的主视图如图所示,则该物体可能为()A.B.C.D.【答案】D【解析】试题解析:只有选项A的图形的主视图是拨给图形,其余均不是.故选A.考点:三视图.8.按照一定规律排列的个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则为()A.9B.10C.11D.12【答案】A.考点:数字变化规律.9.已知一个三角形的三边长分别为5,7,8.则其内切圆的半径为().............A.B.C.D.【答案】C考点:三角形的内切圆.10.如图,在中,,以的一边为边画等腰三角形,使得它的第三个顶点在的其他边上,则可以画出的不同的等腰三角形的个数最多为().............A.4B.5C.6D.7【答案】C考点:画等腰三角形.第Ⅱ卷(非选择题共90分)二、填空题(共6小题,每小题3分,共18分)11.计算的结果为.【答案】2.【解析】试题解析:=6-4=2.考点:有理数的混合运算..............12.计算的结果为.【答案】x-1.【解析】试题解析:=考点:分式的加减法.13.如图,在ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE,若AE=AB,则∠EBC的度数为.【答案】30°.【解析】考点:1.解平分线的性质;2.平行四边形的性质.14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为..............【答案】.【解析】试题解析:根据题意可得:列表如下红1红2黄1黄2黄3红1红1,红2红1,黄1红1,黄2红1,黄3红2红2,红1红2,黄1红2,黄2红2,黄3黄1黄1,红1黄1,红2黄1,黄2黄1,黄3黄2黄2,红1黄2,红2黄2,黄1黄2,黄3黄3黄3,红1黄3,红2黄3,黄1黄3,黄2共有20种所有等可能的结果,其中两个颜色相同的有8种情况,故摸出两个颜色相同的小球的概率为.考点:列表法和树状图法.15.如图△ABC中,AB=AC,∠BAC=120°,∠DAE=60°,BD=5,CE=8,则DE的长为.【答案】7.【解析】.............考点:1.含30度角的直角三角形;2.等腰三角形的性质.16.已知关于x的二次函数y=ax2+(a2-1)x-a的图象与轴的一个交点的坐标为(m,0),若.............2m3,则a的取值范围是.【答案】-3a-2,a.【解析】试题解析:把(m,0)代入y=ax2+(a2-1)x-a得,am2+(a2-1)m-a=0解得:m=∵2m3解得:-3a-2,a.考点:二次函数的图象.三、解答题(共8小题,共72分)在答题卡指定位置写出必要的演算过程或证明过程.17.解方程:.【答案】x=.考点:解一元一次方程.18.如图,点在一条直线上,,.写出与之间的关系,并证明你的结论..............【答案】证明见解析:【解析】试题分析:通过证明ΔCDF≌ΔABE,即可得出结论试题解析:CD与AB之间的关系是:CD=AB,且CD∥AB证明:∵CE=BF,∴CF=BE在ΔCDF和ΔBAE中∴ΔCDF≌ΔBAE∴CD=BA,∠C=∠B∴CD∥BA考点:全等三角形的判定与性质.19.某公司共有三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图.各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A510B8C5(1)①在扇形图中,C部门所对应的圆心角的度数为___________;②在统计表中,___________,___________;(2)求这个公司平均每人所创年利润.【答案】(1)①108°;②9,6;(2)7.6万元..............5÷25%=20∴20×45%=9(人)20×30%=6(人)(2)10×25%+8×45%+5×30%=7.6答:这个公司平均每人所创年利润是7.6万元.考点:1.扇形统计图;2.加权平均数.20.某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件,其中甲种奖品每件40元,乙种奖品每件30元.(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件;(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种...不同的购买方案.【答案】(1)甲、乙两种奖品分别购买5件、15件.(2)该公司有两种不同的购买方案:方案一:购买甲种奖品7件,购买乙种奖品13件;方案二、购买甲种奖品8件,购买乙种奖品12件..............(2)设甲种奖品购买m件,则乙种奖品购买(20-m)件依题意得:解得:∵m为整数,∴m=7或8当m=7时,20-m=13;当m=8时,20-m=12答:该公司有两种不同的购买方案:方案一:购买甲种奖品7件,购买乙种奖品13件;方案二、购买甲种奖品8件,购买乙种奖品12件.考点:1.二元一次方程组的应用;2.一元一次不等式组的应用.21.如图,内接于,的延长线交于点.(1)求证平分;(2)若,求和的长.【答案】(1)证明见解析;(2);..............(2)过点C作CE⊥AB于E∵sin∠BAC=,设AC=5m,则CE=3m∴AE=4m,BE=m在RtΔCBE中,m2+(3m)2=36∴m=,∴AC=延长AO交BC于点H,则AH⊥BC,且BH=CH=3,.............考点:1.全等三角形的判定与性质;2.解直角三角形;3.平行线分线段成比例.22.如图,直线与反比例函数的图象相交于和两点.(1)求的值;(2)直线与直线相交于点,与反比例函数的图象相交于点.若,求的值;.............(3)直接写出不等式的解集.【答案】(1)-6;(2)m=2或6+;(3)x-1或5x6(2)∵M是直线y=m与直线AB的交点∴M(,m)同理,N(,m)∴MN=|-|=4∴-=±4解得m=2或-6或6±∵m0∴m=2或6+(3)x-1或5x6考点:1.求反比例函数解析式;2.反比例函数与一次函数交点问题.23.已知四边形的一组对边的延长线相交于点..............(1)如图1,若,求证;(2)如图2,若,,,,的面积为6,求四边形的面积;(3)如图3,另一组对边的延长线相交于点,若,,,直接写出的长(用含的式子表示).【答案】(1)证明见解析;(2)75-18;(3)(3)由(1)(2)提供的思路即可求解.试题解析:(1)∵∠ADC=90°∴∠EDC=90°∴∠ABE=∠CDE又∵∠AEB=∠CED∴ΔEAB∽ΔECD∴∴.............由(1)有:ΔECG∽ΔEAH∴∴EH=9∴S四边形ABCD=SΔAEH-SΔECG-SΔABH==75-18(3)考点:相似三角形的判定与性质.24.已知点在抛物线上..............(1)求抛物线的解析式;(2)如图1,点的坐标为,直线交抛物线于另一点,过点作轴的垂线,垂足为,设抛物线与轴的正半轴交于点,连接,求证;(3)如图2,直线分别交轴,轴于两点,点从点出发,沿射线方向匀速运动,速度为每秒个单位长度,同时点从原点出发,沿轴正方向匀速运动,速度为每秒1个单位长度,点是直线与抛物线的一个交点,当运动到秒时,,直接写出的值.【答案】(1)抛物线的解析式为:y=x2-x;(2)证明见解析;(3);.(3)进行分类讨论即可得解.试题解析:(1)∵点A(-1,1),B(4,6)在抛物线y=ax2+bx上∴a-b=1,16a+4b=6解得:a=,b=-∴抛物线的解析式为:y=x2-x.............设直线AF的解析式为y=kx+m∵A(-1,1)在直线AF上,∴-k+m=1即:k=m-1∴直线AF的解析式可化为:y=(m-1)x+m与y=x2-x联立,得(m-1)x+m=x2-x∴(x+1)(x-2m)=0∴x=-1或2m∴点G的横坐标为2m.............考点:二次函数综合题.欢迎您的光临,Word文档下载后可修改编辑.双击可删除页眉页脚.谢谢!让我们共同学习共同进步!学无止境.更上一层楼。