证明题专练。每题7分钟。1.如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF(2)填空:①当t为s时,四边形ACFE是菱形;②当t为s时,以A、F、C、E为顶点的四边形是直角梯形。2.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN。(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为_____时,四边形AMDN是矩形;②当AM的值为_______时,四边形AMDN是菱形。ECDMBNA证明题专练。每题7分钟。3.如图,在梯形ABCD中,AD∥BC,延长CB到点E,使BE=AD,连接DE交AB于点M.(1)求证:△AMD≌△BME;(2)若N是CD的中点,且MN=5,BE=2,求BC的长.4.如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.证明题专练。每题7分钟。5.如图,在Rt△ABC中,∠ABC=900,点M是AC的中点,以AB为直径作⊙O分别交AC、BM于点D、E(1)求证:MD=ME(2)填空:①若AB=6,当AD=2DM时,DE=;②连接OD,OE,当∠A的度数为时,四边形ODME是菱形。6.如图,AB,是半圆O的直径,点P是半圆上不与点A,B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连接PC,PO。(1)求证:△CDP≌△POB.EDMBOACPAOBCD证明题专练。每题7分钟。(2)填空:①若AB=4,则四边形AOPD的最大面积为.②连接OD,当∠PBA的度数为时,四边形BPDO是菱形.7.如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA、PB,切点分别为点A、B.(1)连接AC,若∠APO=300,试证明△ACP是等腰三角形;(2)填空:①当DP=cm时,四边形AOBD是菱形;②当DP=cm时,四边形AOBP是正方形.8.请阅读下列材料,并完成相应的任务:阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BCAB,M是弧ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是弧ABC的中点,∴MA=MC...APCODB证明题专练。每题7分钟。任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图(3),已知等边△ABC内接于O,AB=2,D为O上一点,45ABD,AE⊥BD与点E,则△BDC的长是.9.如图,Rt△ABC中,∠ACB=90°,AD为∠BAC的平分线,以AB上一点O为圆心的半圆经过A、D两点,交AB于E,连接OC交AD于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若OF:FC=2:3,CD=3,求BE的长.10.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;证明题专练。每题7分钟。(3)若CD=1,EH=3,求BF及AF长.11.如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作⊙O,交BD于点E,连接CE,过D作DF⊥AB于点F,∠BCD=2∠ABD.(1)求证:AB是⊙O的切线;(2)若∠A=60°,DF=,求⊙O的直径BC的长.12.如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接BD,BE.(1)求证:△ABD∽△AEB;证明题专练。每题7分钟。(2)当43ABBC时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F.若AF=2,求⊙C的半径。13.如图,平面直角坐标系中,O(0,0),A(0,﹣6),B(8,0)三点在⊙P上.(1)求圆的半径及圆心P的坐标;(2)M为劣弧的中点,求证:AM是∠OAB的平分线;(3)连接BM并延长交y轴于点N,求N,M点的坐标.14.如图,AB是⊙O的直径,点C、D在圆上,且四边形AOCD是平行四边形,过点D作⊙O的切线,分别交OA延长线与OC延长线于点E、F,连接BF.(1)求证:BF是⊙O的切线;证明题专练。每题7分钟。FCEAOBD(2)已知圆的半径为1,求EF的长.15.如图,AB是⊙O的直径点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC.(1)求证:DE是⊙O的切线(2)若BF=2,DF=10,求⊙O的半径16.如图,在Rt△ABC中,ACB=90,AO是△ABC的角平分线。以O为圆心,OC为半径作⊙O。(1)求证:AB是⊙O的切线。证明题专练。每题7分钟。(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=12,求AEAC的值。(3)在(2)的条件下,设⊙O的半径为3,求AB的长。17.如图,AB是⊙O的直径,点C是⊙O上一点,连接AC,∠MAC=∠CAB,作CD⊥AM,垂足为D.(1)求证:CD是⊙O的切线;(2)若∠ACD=30°,AD=4,求图中阴影部分的面积.18.如图,已知⊙O的半径为6cm,射线PM经过点O,OP=10cm,射线PN与⊙O相切于点Q.A、B两点同时从点P出发,点A以5cm/s的速度沿射线PM方向运动,点B以4cm/s的速度沿射线PN方向运动,设运动时间为ts.证明题专练。每题7分钟。(1)求PQ的长;(2)当直线AB与⊙O相切时,求证:AB⊥PN;(3)当t为何值时,直线AB与⊙O相切?19.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为______,此时点P,A间的距离为______;点M与AB的最小距离为____,此时半圆M的弧与AB所围成的封闭图形面积____;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)证明题专练。每题7分钟。20.如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC(1)求CD的长;(2)求证:PC是⊙O的切线;(3)点G为的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交于点F(F与B、C不重合).问GE•GF是否为定值?如果是,求出该定值;如果不是,请说明理由.