江苏省南京市高淳区第一中学2019届中考三模数学试题(含答案)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

江苏省南京市高淳区第一中学2019届中考三模数学试题一.选择题(每题2分,满分12分)1.近期浙江大学的科学家们研制出今为止世界上最轻的材料,这种被称为“全碳气凝胶”的固态材料密度仅每立方厘米0.00016克,数据0.00016用科学记数法表示应是()A.1.6×104B.0.16×10﹣3C.1.6×10﹣4D.16×10﹣52.下面几何体中,俯视图为三角形的是()A.B.C.D.3.下列运算正确的是()A.a2•a3=a6B.C.D.(﹣2a2b)3=﹣8a6b34.如图,一次函数y1=ax+b和反比例函数y2=的图象相交于A,B两点,则使y1>y2成立的x取值范围是()A.﹣2<x<0或0<x<4B.x<﹣2或0<x<4C.x<﹣2或x>4D.﹣2<x<0或x>45.如图,在矩形ABCD中,点E、F、G、H分别是边AD、AB、BC、CD的中点,连接EF、FG、GH.HE.若AD=2AB,则下列结论正确的是()A.EF=ABB.C.D.6.如图,二次函数y=ax2+bx+c的对称轴是直线x=1,且经过点(﹣1,0),则下列结论:①abc<0;②2a﹣b=0;③a<﹣;④若方程ax2+bx+c﹣2=0的两个根为x1和x2,则(x1+1)(x2﹣3)<0,正确的有()个.A.1B.2C.3D.4二.填空题(满分20分,每小题2分)7.某天最低气温是﹣5℃,最高气温比最低气温高9℃,则这天的最高气温是℃.8.已知关于x,y的二元一次方程组的解满足x﹣y=3,则m的值为9.若a,b都是实数,b=+﹣2,则ab的值为.10.化简(﹣1)2017(+1)2018的结果为.11.甲、乙两名男同学练习投掷实心球,每人投了10次,平均成绩均为7.5米,方差分别为s甲2=0.2,S乙2=0.08,成绩比较稳定的是(填“甲”或“乙”)12.已知x1,x2是关于x的一元二次方程x2+2x+k﹣1=0的两个实数根,且x12+x22﹣x1x2=13,则k的值为.13.如图,在△ABC中,∠A=68°,若点O是△ABC的外心,则∠BOC=;若点O是△ABC的内心,则∠BOC=.14.若正六边形的内切圆半径为2,则其外接圆半径为.15.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2,∠DPA=45°.则图中阴影部分的面积为.16.问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:PA+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是.三.解答题17.(6分)解下列一元二次方程;(1)x2﹣4x﹣5=0(2)(x﹣3)2=2(x﹣3)18.(6分)先化简,再求值:,其中x=﹣1.19.(7分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题;(1)图①中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数.20.(8分)2018年江苏省扬州市初中英语口语听力考试即将举行,某校认真复习,积极迎考,准备了A、B、C、D四份听力材料,它们的难易程度分别是易、中、难、难;a,b是两份口语材料,它们的难易程度分别是易、难.(1)从四份听力材料中,任选一份是难的听力材料的概率是.(2)用树状图或列表法,列出分别从听力、口语材料中随机选一份组成一套完整的模拟试卷的所有情况,并求出两份材料都是难的一套模拟试卷的概率.21.(8分)某八年级计划用360元购买笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,结果买得的笔记本比打折前多10本.(1)请利用分式方程求出每本笔记本的原来标价;(2)恰逢文具店周年志庆,每本笔记本可以按原价打8折,这样该校最多可购入多少本笔记本?22.(8分)如图,已知在△ABC中,AB=AC,BC在直线MN上.(1)根据下列要求补完整图形,①画出△ABC关于直线MN对称的三角形A′BC;②在线段BC上取两点D、E(,),使BD=CE,连接AD、AE、A′D、A′E;(2)求证:四边形ADA′E是菱形.23.(7分)如图,在测量“河流宽度”的综合与实践活动中,小李同学设计的方案及测量数据如下:在河对岸边选定一个目标点A,在近岸取点B,C,D(点B,C,D在同一条直线上),AB⊥BD,∠ACB=45°,CD=20米,且.若测得∠ADB=25°,请你帮助小李求河的宽度AB.(sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,结果精确到0.1米).24.(9分)小明和小亮分别从甲地和乙地同时出发,沿同一条路相向而行,小明开始跑步,中途改为步行,到达乙地恰好用40min.小亮骑自行车以300m/min的速度直接到甲地,两人离甲地的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示,(1)甲、乙两地之间的路程为m,小明步行的速度为m/min;(2)求小亮离甲地的路程y关于x的函数表达式,并写出自变量x的取值范围;(3)求两人相遇的时间.25.(9分)如图在△ABC中,AD是高,矩形PQMN的顶点P、N分别在AB、AC上,QM在边BC上.若BC=8cm,AD=6cm,(1)PN=2PQ,求矩形PQMN的周长(2)当PN为多少时矩形PQMN的面积最大,最大值为多少?26.(10分)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)证明:DF是⊙O的切线;(2)若AC=3AE,FC=6,求AF的长.27.(10分)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.参考答案一.选择题1.解:0.00016=1.6×10﹣4,故选:C.2.解:A、俯视图为矩形;B、俯视图为圆(带有圆心);C、俯视图为圆;D、俯视图为三角形;故选:D.3.解:A、a2•a3=a5,故此选项错误;B、=2,故此选项错误;C、﹣4÷5×()=﹣,故此选项错误;D、(﹣2a2b)3=﹣8a6b3,正确.故选:D.4.解:观察函数图象可发现:当x<﹣2或0<x<4时,一次函数图象在反比例函数图象上方,∴使y1>y2成立的x取值范围是x<﹣2或0<x<4.故选:B.5.解:连接AC、BD,设AB=a,则AD=2a,由勾股定理得,BD==a,∵E、F分别是边AD、AB的中点,∴EF=BD=a,故选:D.6.解:由图象可知,a<0,b>0,c>0,﹣=1,∴abc<0,﹣b=2a,2a﹣b=4a≠0,故①正确,②错误;x=﹣1时,a﹣b+c=0,3a+c=0,c=﹣3a>2,a<﹣,故③正确;由对称轴直线x=1,抛物线与x轴左侧交点(﹣1,0),可知抛物线与x轴另一个交点(3,0),由图象可知,y=2时,x1>﹣1,x2<3,∴x1+1>0,x2﹣3<0,∴(x1+1)(x2﹣3)<0.故④正确.故选:C.二.填空题7.解:这天的最高气温是﹣5+9=4(℃),故答案为:4.8.解:,②﹣①得:x﹣y=4﹣m,∵x﹣y=3,∴4﹣m=3,解得:m=1,故答案为:19.解:∵b=+﹣2,∴1﹣2a=0,解得:a=,则b=﹣2,故ab=()﹣2=4.故答案为:4.10.解:原式=[(﹣1)(+1)]2017•(+1)=(2﹣1)2017•(+1)=+1.故答案为+1.11.解:∵S甲2=0.2,S乙2=0.08,∴S甲2>S乙2,∴成绩比较稳定的是乙;故答案为:乙.12.解:根据题意得:x1+x2=﹣2,x1x2=k﹣1,+﹣x1x2=﹣3x1x2=4﹣3(k﹣1)=13,k=﹣2,故答案为:﹣2.13.解:若点O是△ABC的外心,则∠BOC=2∠BAC=2×68°=136°;若点O是△ABC的内心,则∠BOC=90°+∠BAC=90°+68°=158°;故答案为:136°;158°.14.解:如图,连接OA、OB,作OG⊥AB于G;则OG=2,∵六边形ABCDEF正六边形,∴△OAB是等边三角形,∴∠OAB=60°,∴OA===,∴正六边形的内切圆半径为2,则其外接圆半径为.故答案为:.15.解:连接OF.∵直径AB⊥DE,∴CE=DE=.∵DE平分AO,∴CO=AO=OE.又∵∠OCE=90°,∴sin∠CEO==,∴∠CEO=30°.在Rt△COE中,OE===2.∴⊙O的半径为2.在Rt△DCP中,∵∠DPC=45°,∴∠D=90°﹣45°=45°.∴∠EOF=2∠D=90°.∴S扇形OEF=×π×22=π.∵∠EOF=2∠D=90°,OE=OF=2,∴SRt△OEF=×OE×OF=2.∴S阴影=S扇形OEF﹣SRt△OEF=π﹣2.故答案为:π﹣2.16.(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,BG=DP,∴GC=PE,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴AP=GP,∴PA+PC=GP+PC=GC=PE∴PA+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2,三.解答题17.解:(1)(x﹣5)(x+1)=0,x﹣5=0或x+1=0,所以x1=5,x2=﹣1;(2)(x﹣3)2﹣2(x﹣3)=0,(x﹣3)(x﹣3﹣2)=0,x﹣3=0或x﹣3﹣2=0,所以x1=3,x2=5.18.解:原式=÷=•=﹣,当x=﹣1时,原式=﹣1.19.解:(1)1﹣10%﹣25%﹣30%﹣20%=15%,故答案为:15(2)调查人数:2÷10%=20人,1.70米的人数:20﹣2﹣5﹣6﹣3=4人,平均数为:=(1.50×2+1.55×5+1.60×6+1.65×3+1.70×4)=1.605米,众数是1.60米,1.60米出现次数最多,出现6次,从大到小排列后处于第10、11位的数都是1.60米,因此中位数是1.60米,答:平均数为1.605米、众数为1.60米,中位数为1.60米.20.解:(1)∵A、B、C、D四份听力材料的难易程度分别是易、中、难、难,∴从四份听力材料中,任选一份是难的听力材料的概率是;故答案为:;(2)树状图如下:∴P(两份材料都是难)==.21.解:(1)设每本笔记本的原来标价为x元,则打折后标价为0.9x元,由题意得:+10=,解得:x=4,经检验,x=4是原方程的根.答:每本笔记本的原来标价为4元;(2)购入笔记本的数量为:360÷(4×0.8)=112.5(本).故该校最多可购入112本笔记本.22.解:(1)所画图形如下所示:(2)说明:连接AA′,交MN于O,∵MN是对称轴,∴MN垂直平分AA′又∵AB=AC∴AA′垂直平分BC,又∵BD=CE∴DO=EO.即AA′垂直平分DE,∴AA′与DE互相垂直平分,∴四边形ADA′E是菱形.23.解

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功