八年级数学人教版 第十一章全等三角形导学案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第十一章:全等三角形导学案黑龙江省依兰县第一中学朱庆伟11.1《全等三角形》导学案【使用说明与学法指导】1.课前完成预习案,牢记基础知识,掌握基本题型,时间不超过15分钟。2.组内探究、合作学习完成《课内探究》不超过20分钟。3.小组长在课上合作探究环节要在组内起引领示范作用,控制讨论节奏。4.人人参与,合作学习,人人都有收获,人人都有进步。5.带﹡的题要多动脑筋,展示你的能力。一、学习目标:1.理解全等三角形的概念,能识别全等三角形的对应顶点、对应边、对应角。2.掌握全等三角形的性质,并运用性质解决有关的问题。3.会用符号表示全等三角形及他们的对应元素,培养大家的符号意识。二、重点难点:运用全等三角形的性质解决相关的计算及证明等问题。三、学习过程《课前预习案》(一)、自主预习课本2—3页内容,回答下列问题:1、能够______________的图形就是全等图形,两个全等图形的_________和________完全相同。2、一个图形经过______、______、_________后所得的图形与原图形。3、把两个全等的三角形重合在一起,重合的顶点叫做,重合的边叫做,重合的角叫做。“全等”用“”表示,读作。4、如图所示,△OCA≌△OBD,对应顶点有:点___和点___,点___和点___,点___和点___;对应角有:____和____,_____和_____,_____和_____;对应边有:____和____,____和____,_____和_____.DBACO5、全等三角形的性质:全等三角形的相等,相等。(二)、练一练1.如图,△ABC≌△CDA,AB和CD,BC和DA是对应边。写出其他对应边及对应角。2如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边。写出其他对应边及对应角。(三)、我的疑惑《课内探究》1.如图△EFG≌△NMH,∠F和∠M是对应角.在△EFG中,FG是最长边.在△NMH中,MH是最长边.EF=2.1㎝,EH=1.1㎝,HN=3.3㎝.(1)写出其他对应边及对应角.(2)求线段MN及线段HG的长.2.如图,△ABC≌△DEC,CA和CD,CB和CE是对应边.∠ACD和∠BCE相等吗?NMCBADCBANMGHFE为什么?3.本节课小结(我的收获)(1)知识方面:(2)学习方法方面:《课后训练》1.如图所示,若△OAD≌△OBC,∠O=65°,∠C=20°,则∠OAD=.第1题图第2题图2.如图,若△ABC≌△DEF,回答下列问题:(1)若△ABC的周长为17cm,BC=6cm,DE=5cm,则DF=cm(2)若∠A=50°,∠E=75°,则∠B=3.如图,△AOB≌△COD,那么∠ABD与∠CDB相等吗?为什么?第3题图﹡4.如图:Rt△ABC中,∠A=90°,若△ADB≌△EDB≌△EDC,则∠C=BDOACDCBEAFEDCBAEDCBAECADBO课题:《11.2三角形全等的判定》(SSS)导学案【使用说明与学法指导】:1.学生利用自习先预习课本第6、7页完成《课前预习案》(15分钟)。2.组内探究、合作学习完成《课内探究》(20分钟)3.小组长在课上合作探究环节要在组内起引领示范作用,控制讨论节奏。4.积极投入,激情展示,做最佳自己。5.带﹡的题要多动脑筋,展示你的能力。【学习目标】1、能自己试验探索出判定三角形全等的SSS判定定理。2、会应用判定定理SSS进行简单的推理判定两个三角形全等3、会作一个角等于已知角.【学习重点】:三角形全等的条件.【学习难点】:寻求三角形全等的条件.【学习过程】:《课前预习案》一、自主学习1、复习:什么是全等三角形?全等三角形有些什么性质?如图,△ABC≌△DCB那么相等的边是:相等的角是:2、讨论三角形全等的条件(动手画一画并回答下列问题)(1).只给一个条件:一组对应边相等(或一组对应角相等),画出的两个三角形一定全等吗?(2).给出两个条件画三角形,有____种情形。按下面给出的两个条件,画出的两个三角形一定全等吗?①一组对应边相等和一组对应角相等②两组对应边相等③两组对应角相等(3)、给出三个条件画三角形,有____种情形。按下面给出三个条件,画出的两个三角形一定全等吗?①三组对应角相等DCBADCBA②三组对应边相等已知一个三角形的三条边长分别为6cm、8cm、10cm.你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗?a.作图方法:b.以小组为单位,把剪下的三角形重叠在一起,发现,这说明这些三角形都是的.c.归纳:三边对应相等的两个三角形,简写为“”或“”.d、用数学语言表述:在△ABC和'''ABC中,∵''ABABACBC∴△ABC≌()用上面的规律可以判断两个三角形.“SSS”是证明三角形全等的一个依据.《课内探究》二、合作探究1、[例]如图,△ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架.求证:△ABD≌△ACD.证明:∵D是BC∴=∴在△和△中AB=BD=AD=∴△ABD△ACD()温馨提示:证明的书写步骤:①准备条件:证全等时需要用的间接条件要先证好;②三角形全等书写三步骤:A、写出在哪两个三角形中,B、摆出三个条件用大括号括起来,C、写出全等结论。2、如图,OA=OB,AC=BC.求证:∠AOC=∠BOC.3、尺规作图。已知:∠AOB.求作:∠DEF,使∠DEF=∠AOBC'B'A'CBACOAB4.本节课小结(我的收获)(1)知识方面:(2)学习方法方面:三、课堂巩固练习.1、如图,AB=AE,AC=AD,BD=CE,求证:△ABC≌ADE。2、已知:如图,AD=BC,AC=BD.求证:∠OCD=∠ODC《课后训练》1、下列说法中,错误的有()个(1)周长相等的两个三角形全等。(2)周长相等的两个等边三角形全等。(3)有三个角对应相等的两个三角形全等。(4)有三边对应相等的两个三角形全等A、1B、2C、3D、42.如图,点B、E、C、F在同一直线上,且AB=DE,AC=DF,BE=CF,请将下面说明ΔABC≌ΔDEF的过程和理由补充完整。解:∵BE=CF(_____________)∴BE+EC=CF+EC即BC=EF在ΔABC和ΔDEF中AB=________(________________)__________=DF(_______________)BC=__________∴ΔABC≌ΔDEF(_____________)3.如图,已知AB=DE,BC=EF,AF=DC,则∠EFD=∠BCA,请说明理由。﹡4.如图,在△ABC中,AB=AC,D是BC的中点,点E在AD上,找出图中全等的三角形,并说明它们为什么是全等的.ABCDEFABCDEFEDCBAC'B'A'CBACBA课题:《11.2三角形全等的判定》(SAS)导学案【使用说明与学法指导】:1.学生课前预习课本第9页完成(自主学习1、4)2.组内探究、合作学习完成(探究一、探究二)3.小组长在课上合作探究环节要在组内起引领示范作用,控制讨论节奏。4.积极投入,激情展示,做最佳自己。5.带﹡的题要多动脑筋,展示你的能力。【学习目标】1、掌握三角形全等的“SAS”条件,能运用“SAS”证明简单的三角形全等问题2.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.3、积极投入,激情展示,做最佳自己。教学重点:SAS的探究和运用.教学难点:领会两边及其中一边的对角对应相等的两个三角形不一定全等.【学习过程】一、自主学习1、复习思考(1)怎样的两个三角形是全等三角形?全等三角形的性质是什么?三角形全等的判定(一)的内容是什么?(2)上节课我们知道满足三个条件画两个三角形有4种情形,三个角对应相等;三条边对应相等;两角和一边对应相等;两边和一角对应相等;前两种情况已经研究了,今天我们来研究第三种两边和一角的情况,这种情况又要分两边和它们的夹角,两边及其一边的对角两种情况。2、探究一:两边和它们的夹角对应相等的两个三角形是否全等?(1)动手试一试已知:△ABC求作:'''ABC,使''ABAB,''BCBC,'AA(2)把△'''ABC剪下来放到△ABC上,观察△'''ABC与△ABC是否能够完全重合?(3)归纳;由上面的画图和实验可以得出全等三角形判定(二):两边和它们的夹角对应相等的两个三角形(可以简写成“”或“”)(4)用数学语言表述全等三角形判定(二)在△ABC和'''ABC中,DCBA∵''ABABBBC∴△ABC≌3、探究二:两边及其一边的对角对应相等的两个三角形是否全等?通过画图或实验可以得出:4.例题学习(再次温馨提示:证明的书写步骤:①准备条件:证全等时需要用的间接条件要先证好;②三角形全等书写三步骤:A、写出在哪两个三角形中,B、摆出三个条件用大括号括起来,C、写出全等结论。)5.我的疑惑:二、学以致用三、当堂检测1、如图,AD⊥BC,D为BC的中点,那么结论正确的有A、△ABD≌△ACDB、∠B=∠CC、AD平分∠BACD、△ABC是等边三角形2、如图,已知OA=OB,应填什么条件就得到△AOC≌△BOD(允许添加一个条件)3、﹡四、能力提升:(学有余力的同学完成)如图,已知CA=CB,AD=BD,M、N分别是CA、CB的中点,求证:DM=DN五、课堂小结1、两边和它们的夹角对应相等的两个三角形全等。简写成“”或“”2、到目前为止,我们一共探索出判定三角形全等的2种方法,它们分别是:和六、作业:第15页习题11.23-4第16页第10题课题:《11.2三角形全等的判定》(ASA、AAS)导学案使用说明:学生利用自习先预习课本第11页-12页10分钟,然后35分钟独立做完学案。正课由小组讨论交流10分钟,25分钟展示点评,10分钟整理落实,对于有疑问的题目教师点拨、拓展。【学习目标】1、掌握三角形全等的“角边角”“角角边”条件.能运用全等三角形的条件,解决简单的推理证明问题2.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.3、积极投入,激情展示,体验成功的快乐。教学重点:已知两角一边的三角形全等探究.教学难点:灵活运用三角形全等条件证明.【学习过程】DBCOADCABFE一、自主学习1、复习思考(1).到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?(2).在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?三角形中已知两角一边又分成哪两种呢?2、探究一:两角和它们的夹边对应相等的两个三角形是否全等?(1)动手试一试。已知:△ABC求作:△'''ABC,使'B=∠B,'C=∠C,''BC=BC,(不写作法,保留作图痕迹)(2)把△'''ABC剪下来放到△ABC上,观察△'''ABC与△ABC是否能够完全重合?(3)归纳;由上面的画图和实验可以得出全等三角形判定(三):两角和它们的夹边对应相等的两个三角形(可以简写成“”或“”)(4)用数学语言表述全等三角形判定(三)在△ABC和'''ABC中,∵'BBBCC∴△ABC≌3、探究二。两角和其中一角的对边对应相等的两三角形是否全等(1)如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用前面学过的判定方法来证明你的结论吗?(2)归纳;由上面的证明可以得出全等三角形判定(四):两个角和其中一角的对边对应相等的两个三角形(可以简写成“”或“”)(3)用数学语言表述全等三角形判定(四)在△ABC和'''ABC中,∵'AABBC∴△ABC≌C'B'A'CBAC'B'A'CBACBA二、合作探究1、例1、如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.求证:AD=AE.2.已知:点D在AB上,点E在AC上,BE⊥AC,CD⊥AB,AB=AC,求证:BD=CE三、学以致用3、如图,

1 / 22
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功