New Parallel Algorithms for Direct Solution of Spa

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

NewParallelAlgorithmsforDiretSolutionofSparseLinearSystems:PartI-SymmetriCoeÆientMatrixKartikGopalanC.SivaRamMurthyDepartmentofComputerSieneandEngineeringIndianInstituteofTehnologyMadras600036,Indiae-mail:murthyiitm.ernet.inAbstratInthispaper,weproposeanewparallelbidiretionalalgorithm,basedonCholeskyfatorization,forthesolutionofsparsesymmetrisystemoflinearequations.Unliketheexistingalgorithms,thenumerialfatorizationphaseofouralgorithmisarriedoutinsuhamannerthattheentirebaksubstitutionomponentofthesubstitutionphaseisreplaedbyasinglestepdivision.Sinethereisasubstantialredutioninthetimetakenbytherepeatedexeutionofthesubstitutionphase,ouralgorithmispartiularlysuitedforthesolutionofsystemswithmultipleb-vetors.Theeetivenessofouralgorithmisdemonstratedbyomparingitwiththeexistingparallelalgorithm,basedonCholeskyfatorization,usingextensivesimulationstudies.InPartIIofthispaper,weproposeanewparallelbidiretionalalgorithm,basedonLUfatorization,forthesolutionofgeneralsparsesystemoflinearequations,havingnon-symmetrioeÆientmatrix.KeyWords:LinearEquation,SparseSymmetriSystem,CholeskyFatorization,ParallelAlgorithm,BidiretionalSheme,Multiproessor.1IntrodutionTheproblemofsolvinglargesparsesystemsoflinearequationsarisesinvariousappliationssuhasniteelementanalysis,powersystemanalysis,andiruitsimulationforVLSICAD.Authorfororrespondene.1Inthispaper,weonsidertheproblemofsolvingsparsesymmetrisystemoflinearequationsoftheformAx=b,whereAisasparsesymmetrioeÆientmatrixofdimensionNN,andxandbareN-vetors.Traditionally,theproessforobtainingthediretsolutionforasparsesymmetrisystemoflinearequations,Ax=b,involvesthefollowingfourdistintphases.Ordering:ApplyanappropriatesymmetripermutationmatrixPsuhthatthenewsystemisoftheform(PAPT)(Px)=(Pb).Symbolifatorization:Setuptheappropriatedatastruturesforthenumerialfa-torizationphase.Numerialfatorization:DeterminetheCholeskyfatorLsuhthatA=LLT.Substitution:DeterminethesolutionvetorxbyrstsolvingtheforwardtriangularsystemLy=bandthensolvingthebakwardtriangularsystemLTx=y.Forsolutionofmultipleb-vetors,therstthreephasesarearriedoutonlyonetoobtaintheCholeskyfatorL.Thesubstitutionphaseisthenrepeatedforeahb-vetorinordertoobtainadierentsolutionvetorxineahase.Thus,inproblemswhihinvolvesolutionofmultipleb-vetors,thetimetakenbyrepeatedexeutionofsubstitutionphasedominatestheoverallsolutiontime.Anyparallelformulation,whihanreduethetimetakenbythesubstitutionphase,willontributesigniantlytoenhanedperformaneoftheentireproess.AlthoughtraditionalapproahestoparallelsolutionofsparsesymmetrisystemoflinearequationshaveyieldedeÆientparallelalgorithmsforthenumerialfatorizationphase[1,2,7,11,15,21℄,notmuhprogresshasbeenmadeintheaseofsubstitutionphaseduetothelimitedamountofparallelisminherentinthisphase.Moreover,theforwardandbakwardsubstitutionomponentsofthesubstitutionphaserequiredierentparallelalgorithmsduetothemannerinwhihdataisdistributedovervariousproessors.Existingworkonparallelformulationsforthisphaseanbefoundin[6,12,14℄.InPartIofthispaper,wepresentanewbidiretionalalgorithm,basedonCholeskyfatorization,forthesolutionofsparsesymmetrisystemoflinearequations.Inouralgo-rithm,thenumerialfatorizationphaseisarriedoutinsuhamannerthattheentirebaksubstitutionomponentofthesubstitutionphaseisreplaedbyasinglestepdivision.Thebidiretionalalgorithm,basedonLUfatorization,forthesolutionofgeneralsparsesystemoflinearequations,ispresentedinPartIIofthispaper.Theappliationofthenoveloneptofbidiretionaleliminationtodenselinearsystemsanbefoundin[19,20℄.2Therestofthepaperisorganizedasfollows.Insetion2,wepresentthebidiretionalsparseCholeskyfatorizationalgorithmforsparsesymmetrimatries.Insetion3,wepresentthebidiretionalalgorithmforthesubstitutionphasewhihdoesnothaveabaksubstitutionomponent.Insetion4,wedevelopabidiretionalheuristialgorithmfororderingonthelinesofthepopularnesteddissetionorderingalgorithm[4,5℄forsparsesymmetrimatries.Insetion5,wedesribeasymbolifatorizationalgorithmwhihsetsupdatastruturesrequiredbythebidiretionalCholeskyfatorizationphase.Insetion6,weevaluatetheperformaneofthebidiretionalalgorithmonhyperubemultiproessorsandpresentomparisonofouralgorithmwiththeexistingshemebasedonsparseCholeskyfatorization.Insetion7,weonludethispaperwithsomeobservationsaboutpossiblefutureimprovementstothebidiretionalsheme.2TheBidiretionalSparseCholeskyFatorization(B-SCF)AlgorithmUnliketheregularCholeskyfatorizationalgorithmwhihfatorizesAtoobtainthelowertriangularmatrixL,suhthatA=LLT,theBSCFalgorithmfatorizesAintoaseriesoftrapezoidalmatriesofmultipliers.Thisseriesoftrapezoidalmatriesremovetheneedforthebaksubstitutionomponentinthesubstitutionphase.Inthissetion,werstpresentanoverallviewoftheoneptofbidiretionalCholeskyfatorization.WethenproeedtodesribethemannerinwhihthesparsityoftheoeÆientmatrixanbeexploitedtoobtainhigherdegreeofparallelism.FollowingthiswepresentthedetailsofimplementingBSCFalgorithmonmultiproessorsystems.2.1BidiretionalCholeskyFatorization-TheConeptInregularCholeskyalgorithm,thelowertriangularmatrixLisobtainedbyhoosingolumns1throughNo

1 / 37
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功