平面向量的坐标运算(教案)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

平面向量的坐标运算(一)(教案)教学目标:知识与技能:(1)理解平面向量的坐标概念;(2)掌握平面向量的坐标运算.过程与方法:(1)通过对坐标平面内点和向量的类比,培养学生类比推理的能力;(2)通过平面向量坐标表示和坐标运算法则的推导培养学生归纳、猜想、演绎的能力;(3)通过用代数方法处理几何问题,提高学生用数形结合的思想方法解决问题的能力.情感、态度与价值观:(1)让学生在探索中体验探究的艰辛和成功的乐趣,培养学生锲而不舍的求索精神和合作交流的团队精神,提高学生的数学素养;(2)使学生认识数学运算对于建构数学系统、刻画数学对象的重要性,进而理解数学的本质;(3)让学生体会从特殊到一般,从一般到特殊的认识规律.教学重点和教学难点:教学重点:平面向量的坐标运算;教学难点:平面向量坐标的意义.教学方法:“引导发现法”、“探究学习”及“合作学习”的模式.教学手段:利用多媒体动画演示及实物展示平台增加直观性,提高课堂教学效率.教学过程设计:一、创设问题情境,引入课题.同学们,我们知道,向量的概念是从物理中抽象出来的,人们最初对向量的研究是从几何的的角度来进行的,但是随着问题的不断深入,我们发现用图形来研究向量有一些不便之处,那么,有没有一种更简洁的方式可以来表示向量呢?我国著名数学家华罗庚先生说过:“数无形,少直观;形无数,难入微。”图形关系往往与某些数量关系密切联系在一起,数与形是互相依赖的,所以我们想到了用数来表示向量.思路一:用一个数能否表示向量?(请学生回答)(不能,因为向量既有大小,又有方向)思路二:用两个数能否表示向量?(引导学生思考)在平面直角坐标系内,一个点和一对有序实数对之间有一一对应的关系,那么,向量是否也能找到与之对应的实数呢?让我们先来探讨这样一个问题:探究一:如图,为互相垂直的单位向量,请用,ij表示图中的向量,,,.abcd请学生动手完成并回答:根据向量加法的几何意义,我们只要把分解在,ij的方向上,就可得到:33aij,同理可得2bij33cij42dij我们用,ij来表示的这种形式是否唯一?根据是什么?(提问学生)由此复习平面向量基本定理:如果1e,2e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数12,,使1122=aee,其中的1e,2e称为平面的一组基底.强调:基底不唯一,只要不共线,就可作为基底,而一旦基底选定,任一向量在基底方向的分解形式就是唯一的.二、理解概念,加深认识.根据平面向量基本定理,我们知道,在选定基底的情况下,所给,,,.abcd四个向量在基底方向的分解形式是唯一的,也就是说,这几个向量用基底、来表示的形式是唯一的,每个向量对应的这对实数对我们就将其称之为向量的坐标.推广到平面内的任意向量,我们怎样来定义向量的坐标?(引导学生思考,请学生尝试给出定义)如图,在直角坐标系内,我们分别取与轴、轴方向相同的两个单位向量、作为基底任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得axiyj…………○1我们把),(yx叫做向量的(直角)坐标,记作yx-1-4O-22222-331234bacd-112345-3-44-55ij-2(,)axy…………○2其中叫做在轴上的坐标,叫做在轴上的坐标,○2式叫做向量的坐标表示在定义中,要注意axiyj(,)xy定义实际上给出了求向量坐标的方法:写出向量在正交基底方向的分解形式,就得到了向量的坐标;反过来,知道了一个向量的坐标,就相当于知道了它在、方向的分解形式.结合定义,指导学生求出向量、、,OP的坐标.(多媒体演示)在坐标系中观察,向量及OP的坐标与其终点坐标有何关系?这几个向量在坐标系中的位置有什么共同点?什么样的向量其坐标就是终点坐标?通过这样的问题引导让学生得到结论:起点在原点的向量其坐标就是其终点的坐标.类比点的坐标,提出:向量平移后具体位置发生了改变,其坐标是否会发生变化?结合向量坐标的定义,将平移前后的向量分别分解在基底的方向上,所得四边形是全等的,因此,这两个向量的坐标相同.也可这样理解,通过动画演示,指出:平移前后的向量是相等向量,通过平移,可以使它们的起点平移到坐标原点处,则其终点必然重合,此时,它们的坐标都对应着这个终点的坐标,由此得到:相等向量的坐标相同,坐标相同的向量是相等向量.三、自主探索,推导法则.前面所学的向量的加法、减法、实数与向量的积这几种运算的结果是向量,因此,引入向量后,这些运算的结果也能用坐标表示,1122(,),(,),,(,),axybxyababaxya探究二:(1)已知求的坐标.(2)已知和实数求的坐标.请学生以四人小组为单位,自己讨论推导,再将推导方法及所得结论在班上进行交流,最后,教师再来归纳整理,由此得出平面向量的坐标运算法则:(1)两个向量和与差的坐标分别等于这两个向量相应坐标的和与差:),(2121yyxxba(其中),(),,(2211yxbyxa)(2)实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标:若),(yxa,则),(yxa;(2,1),(3,4),,,34abababab练习1.已知求的坐标.探究三:通过前面的学习,我们知道,起点在原点的向量的坐标就是其终点坐标,那么,对于起点不在原点的向量,又该如何来确定其坐标?若已知其起点坐标和终点坐标,如何求出此向量的坐标?先来看一个具体的例子:求出图中的向量的坐标,并观察其坐标与其起点坐标、终点坐标之间有何关系?(引导学生从特殊到一般,归纳猜想)学生不难发现:其坐标等于向量的终点坐标减去起点坐标.再将A,B的坐标推广到一般的),(),,(2211yxyx,可得相应结论。教师指出:这只是我们从具体的例子中得到的猜想,要说明其正确性,必须进行严密的推证。指导学生进行证明,关键说明:已知A,B两点的坐标相当于知道了向量,OB的坐标,而ABOBOA,从而转化为坐标的运算.由此,得到一个重要的结论:一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标.练习2.(2,3),(3,5),ABBA(1)已知求的坐标.(1,2),(2,1),ABAB(2)已知求的坐标.(1,2),(2,1),ABBA(3)已知求的坐标.四、巩固应用,加深理解.例1、已知平行四边形ABCD的三个顶点A、B、C的坐标分别为(-2,1)、(-1,3)、(3,4),求顶点D的坐标.解:设顶点D的坐标为(,)xy例2、已知平面上三点的坐标分别为A(2,1),B(1,3),C(3,4),求点D的坐标使这四点构成平行四边(1,2)(3,4),12=(3,4)31242222ABDCxyABDCxyxxyyD,由得(,)点的坐标为(,).5AB-2-11234(2,3)AB2-143(2,2)(4,5)yx-2O1形的四个顶点.(引导学生思考,多媒体演示)分析:未固定四边形四个顶点的顺序,因此,点D的位置有3个.五、课堂小结.(先请学生归纳,再由教师完善)1.平面向量的坐标的概念;2.几个重要结论:(1)相等的向量坐标相同;坐标相同的向量是相等向量;(2)起点在原点的向量的坐标等于其终点的坐标.(3)一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标.即:11222121(,),(,),(,)AxyBxyABxxyy若则3.平面向量的坐标运算:1122(,),(,),axybxy若1212(,),abxxyy则(1)1212(2)(,),abxxyy11(3)(,)axy六、布置作业.(必做题)课本P114.2.3.4(选做题)我们把平面内两条相交但不垂直的数轴构成的坐标系(两条数轴的原点重合且单位长度相同)称为斜坐标系.平面上任意一点P的斜坐标定义为:若12OPxeye(其中1e、2e分别为斜坐标系的x轴、y轴正方向上的单位向量,x、y∈R),则点P的斜坐标为(x,y).在平面斜坐标系xoy中,若60xoy,已知点M的斜坐标为(1,2),则点M到原点O的距离为.(使学生进一步加强对向量坐标表示的理解,把对数学知识的探究由课内延伸到课外)平面向量的坐标运算(一)(教案说明)一、教学内容分析及目标设定.向量是“形”与“数”的结合体,具有代数形式和几何形式的双重身份,是中学数学知识的一个重要交汇点,常与三角、数列、函数、解析几何、立体几何等内容交叉渗透,自然地交汇在一起;同时,向量具有丰富的物理背景,在物理中应用很广泛,因此,向量是中学数学学习中一个重要的内容。本课时内容是向量的坐标表示及向量的坐标运算,之前的教学内容为向量的概念及向量的加法、减法及实数与向量的积的运算,集中在对向量的几何特征的研究上,而本节课之后,主要研究向量的代数运算,因此,本节课具有承前启后的作用,正是由于向量坐标概念的引入及向量坐标运算法则的导出,使得对向量的研究由“形”转向“数”成为了可能。本节内容是让学生体会数学化的一个很好的过程,它有助于学生体会数学思维的方式和方法,培养学生进行数学的思考和数学的说理,所以它在学生的学习上也具有重要的作用。基于以上分析,本节课的教学目标设定为:知识与技能:(1)理解平面向量的坐标概念,(2)掌握平面向量的坐标运算。过程与方法:(1)通过对坐标平面内点和向量的类比,培养学生类比推理的能力;(2)通过平面向量坐标表示和坐标运算法则的推导培养学生归纳、猜想、演绎的能力;(3)通过用代数方法处理几何问题,提高学生用数形结合的思想方法解决问题的能力。情感、态度与价值观:(1)让学生在探索中体验探究的艰辛和成功的乐趣,培养学生锲而不舍的求索精神和合作交流的团队精神,提高学生的数学素养;(2)使学生认识数学运算对于建构数学系统、刻画数学对象的重要性,进而理解数学的本质;(3)让学生体会从特殊到一般,从一般到特殊的认识规律。二、教学诊断分析.本节课既有概念的教学,又有运算法则的推导和应用,知识点繁多而且相互间的衔接并不紧密,依据以往的经验,学生往往只注重对法则的应用,而忽视对概念的理解,对概念本质的理解不到位导致在处理相关问题时出现偏差,也使得学生的数学思维的发展受到限制。因此,数学教学不仅要解决“学什么”的问题,更应让学生明白“为什么学”。依据数学课程改革应关注知识的发生和发展过程的理念,在教学中渗透数学思想和方法,因此,在向量坐标概念的引入过程中,我从平面向量知识体系的发展引入,使学生明白用数来表示向量是数学本身发展的必然,是为对向量的研究从“形”转“数”搭建桥梁,从而激发起学生的求知欲。在提出“如何用数来表示向量”这一问题后,类比点的坐标,引导学生猜想:点可以用一对有序实数对来表示,向量也是平面图形,是否也能用一对实数来表示?这一问题的解决,不是由教师直接告诉学生,而是通过学生自己探索得到答案。通过设置探究:让学生将所给向量用给定的基底表示出来,结合平面向量基本定理,引导学生发现,所给的每一个向量用基底来表示的形式都是唯一的,也就是说,对于每一个向量,都可以用一对实数唯一表示,这就使刚才的问题得到了解决,从而引入坐标的概念。学生对向量坐标表示的意义的理解是本节课的难点,由于对概念理解不清,使得不少学生到高三时还常常在这样一个问题上犯错:向量平移后,将向量坐标也按平移公式来进行计算。这正是对向量坐标概念的理解不到位造成的,因此,类比坐标系内不同的点的坐标不同,提出:平移后向量的具体位置发生了变化,向量的坐标会不会变?师生共同分析:平移前后的向量是相等向量,其方向相同,大小相等,按照向量坐标的定义,将其分解在方向的形式是一致的,因此,坐标相同。接着通过动画演示,从另一个角度来说明此问题:平移前后的向量是相等向量,通过平移,可以使它们的起点平移到坐标原点处,则其终点必然重合,此时,它们的坐标都对应着这个终点的坐标。通过不同的途径,让学生自己得出“平移不改变向量的坐标”即“相等向量坐标相同”这一重

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功