储氢材料PPT演示课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1储氢材料2第一节储氢材料氢能源系统是作为一种储量丰富、无公害的能源替代品而倍受重视。如果以海水制氢作为燃料,从原理上讲,燃烧后只能生成水,这对环境保护极为有利;3如果进一步用太阳能以海水制氢,则可实现无公害能源系统。此外,氢还可以作为贮存其他能源的媒体,通过利用过剩电力进行电解制氢,实现能源贮存。45在以氢作为能源媒体的氢能体系中,氢的贮存与运输是实际应用中的关键。贮氢材料就是作为氢的贮存与运输媒体而成为当前材料研究的一个热点项目。6贮氢材料(Hydrogenstoragematerials)是在通常条件下能可逆地大量吸收和放出氢气的特种金属材料。7贮氢材料的作用相当于贮氢容器。贮氢材料在室温和常压条件下能迅速吸氢(H2)并反应生成氢化物,使氢以金属氢化物的形式贮存起来,在需要的时候,适当加温或减小压力使这些贮存着的氢释放出来以供使用。8贮氢材料中,氢密度极高,下表列出几种金属氢化物中氢贮量及其他氢形态中氢密度值。9(1)相对氢气瓶重量从表中可知,金属氢化物的氢密度与液态氢、固态氢的相当,约是氢气的1000倍。10另外,一般贮氢材料中,氢分解压较低,所以用金属氢化物贮氢时并不必用101.3MPa(1000atm)的耐压钢瓶。11可见,利用金属氢化物贮存氢从容积来看是极为有利的。但从氢所占的质量分数来看,仍比液态氢、固态氢低很多,尚需克服很大困难,尤其体现在对汽车工业的应用上。12当今汽车工业给环境带来恶劣的影响,因此汽车工业一直期望用以氢为能源的燃料电池驱动的环境友好型汽车来替代。13传统储氢方法与新型材料储氢效率的比较14对于以氢为能源的燃料电池驱动汽车来说,不仅要求贮氢系统的氢密度高,而且要求氢所占贮氢系统的质量分数要高(估算须达到(H)=6.5%),当前的金属氢化物贮氢技术还不能满足此要求。因此,高容量贮氢系统是贮氢材料研究中长期探求的目标。15汽车是消耗化石燃料的大户,汽车尾气对于环境的污染也是尽人皆知。要保护环境,必须推广氢燃料的汽车。在汽车上应用氢有两种可能的方式:一种是在发动机内部与氧气混合燃烧。其能量转化效率(约25%)受卡诺热机效率所限,仅比汽油的效率略高。另一种是通过燃料电池产生电能,能量转化效率能达到50-60%,约是前者的两倍。所以现在的氢燃料汽车都倾向于第二种方式。对汽车来讲,氢气的存储应当密度高、轻便、安全而且经济。一台装有24kg汽油可行驶400km的发动机,行驶同样的距离,靠燃烧方式需消耗8kg氢,靠电池供能则仅需4kg氢。而4kg的氢气在室温和一个大气压下体积为45m3,这对于汽车载氢是不现实的。16目前限制氢燃料汽车推广的最主要因素就是氢气的储存问题。传统的基于液化氢和高压气态氢的储存方法有很大的弊端。要携带足够行驶400-500km的高压气态氢,容器必须由能禁受住高达700bar压力的复合材料制成。如果发生撞车,后果不堪设想;容器的绝热性对再次充氢不利,对压力进行有效的控制就更是一个难题。17要增加单位体积容器的储氢量,密度为70.8kg/m3(21K,1atm)的液态氢相对可行,为此必须将氢气冷却至21K,而该过程消耗的能量相当于储存氢气能量的三分之一。为防止形成过高的压力,储氢系统必须是开放的,于是透过绝热壁的有限热交换会使得每天有2-3%的氢气蒸发损失,这进一步降低了储存的效率。液氢作为燃料应用于航天飞机以及一些高速飞机。目前解决上述问题的最好办法就是将氢气储存在某种可以快速吸入和释放大量氢气的材料中。1819贮氢材料的发现和应用研究始于20世纪60年代,1960年发现镁(Mg)能形成MgH2,其吸氢量高达(H)=7.6%,但反应速度慢。201964年,研制出Mg2Ni,其吸氢量为(H)=3.6%,能在室温下吸氢和放氢,250℃时放氢压力约0.1MPa,成为最早具有应用价值的贮氢材料。21同年在研究稀土化合物时发现了LaNi5具有优异的吸氢特性;1974年又发现了TiFe贮氢材料。LaNi5和TiFe是目前性能最好的贮氢材料。22(一)贮氢原理1、金属与氢气生成金属氢化物的反应2、金属氢化物的能量贮存、转换3、金属氢化物的相平衡和热力学231、金属与氢气生成金属氢化物的反应氢化物按它的结构大致分成三类:离子型氢化物(又叫盐型氢化物),共价型氢化物(又叫分子型氢化物),金属型氢化物。据最新研究,金属型氢化物在有机合成及作储氢材料方面有重要用途。例如,1体积钯可吸收700~900体积的氢气成为金属氢化物,加热后又释放出氢气。金属和氢的化合物统称为金属氢化物。241)离子型氢化物也称盐型氢化物。是氢和碱金属、碱土金属中的钙、锶、钡、镭所形成的二元化合物。其固体为离子晶体,如NaH、BaH2等。这些元素的电负性都比氢的电负性小。在这类氢化物中,氢以H-形式存在,熔融态能导电,电解时在阳极放出氢气。离子型氢化物中氢的氧化数为-1,具有强烈失电子趋势,是很强的还原剂,在水溶液中与水强烈反应放出氢气,使溶液呈强碱性,如:CaH2+2H2O→Ca(OH)2+2H2↑在高温下还原性更强,如:NaH+2CO→HCOONa+C2CaH2+PbSO4→PbS+2Ca(OH)22LiH+TiO2→Ti+2LiOH离子型氢化物可由金属与氢气在不同条件下直接合成制得。除用做还原剂外,还用做干燥剂、脱水剂、氢气发生剂,1kg氢化锂在标准状态下同水反应可以产生2.8m3的氢气。在非水溶剂中与+Ⅲ氧化态的B(Ⅲ),Al(Ⅲ)等生成广泛用于有机合成和无机合成的复合氢化物,如氢化铝锂:4LiH+AlCl3→LiAlH4+3LiCl复合氢化物主要用做还原剂、引发剂和催化剂。2526元素周期表中IA族元素(碱金属)和IIA族元素(碱土金属)分别与氢形成MH、MH2化学比例成分的金属氢化物。金属氢化物是白色或接近白色的粉末,是稳定的化合物。这些化合物称为盐状氢化物或离子键型氢化物,氢以H-离子状态存在。272)共价型氢化物也称分子型氢化物。由氢和ⅢA~ⅦA族元素所形成。其中与ⅢA族元素形成的氢化物是缺电子化合物和聚合型氢化物,如乙硼烷B2H6,氢化铝(AlH3)n等。各共价型氢化物热稳定性相差十分悬殊,氢化铅PbH4,氢化铋BiH3在室温下强烈分解,氟化氢,水受热到1000℃时也几乎不分解。共价型氢化物也有还原性,因氢的氧化数为+1,其还原性大小取决于另一元素R-n失电子能力。一般说,同一族从上至下还原性增强,同一周期从左至右还原性减弱。例如:4NH3+5O2→4NO+6H2O2PH3+4O2→P2O5+3H2O2H2S+3O2→2SO2+2H2O共价型氢化物在水中的行为较为复杂。常见为:形成强酸的:HCl,HBr,HI;形成弱酸的:HF,H2S,H2Se,H2Te;形成碱的:NH3;水解放出氢气的:B2H6,SiH4;与水不作用的:CH4,PH3,AsH3,GeH4,SnH4,SbH3。28氢化物RHn给出质子的能力一般与R的电负性、半径有关。同一周期从左至右酸性随R的电负性增大而增强;同一族,从上至下,酸性增强主要由R的半径相应增大决定。酸碱性强弱由氢化物在水中电离出H+质子的热化学循环过程中总能量效应决定。29303)过渡型氢化物也称金属型氢化物。它是除上述两类外,其余元素与氢形成的二元化合物,这类氢化物组成不符合正常化合价规律,如,氢化镧LaH2.76,氢化铈CeH2.69,氢化钯Pd2H等。它们晶格中金属原子的排列基本上保持不变,只是相邻原子间距离稍有增加。因氢原子占据金属晶格中的空隙位置,也称间充型氢化物。过渡型氢化物的形成与金属本性、温度以及氢气分压有关。它们的性质与母体金属性质非常相似,并具有明显的强还原性。一般热稳定性差,受热后易放出氢气。HydrogenonTetrahedralSitesHydrogenonOctahedralSites在不同金属晶格构型中氢占据的位置31氢气作为未来很有希望的能源,要解决的中心问题是如何储存。一些金属或合金是储氢的好材料。钯、钯合金及铀都是强吸氢材料,但价格昂贵。近年来,最受人们注意的是镧镍-5LaNi5(吸氢后为LaNi5H6),它是一种储氢的好材料。容量为7L的小钢瓶内装镧镍-5所能盛的氢气(304kPa),相当于容量为40L的15000kPa高压氢气钢瓶所容纳的氢气(重量相当),只要略微加热,LaNi5H6即可把储存的全部氢气释放出来。32除镧镍-5外,La-Ni-Cu,Zr-Al-Ni,Ti-Fe等吸氢材料也正在研究中。研究中的丰产元素,尤其是稀土金属及其合金的吸氢作用有着更重要的意义。各种金属与氢反应性质的不同可以从氢的溶解热数据中反映出来。下表是氢在各种金属中的溶解热H数据。3334氢在各种金属中的溶解热H(kcal/mol)35IA-IVA族金属的氢的溶解热是负(放热)的很大的值,称为吸收氢的元素;VIA--VIII族金属显示出正(吸热)的值或很小的负值,称为非吸收氢的元素;VA族金属刚好显示出两者中间的数值。362、金属氢化物的能量贮存、转换金属氢化物可以作为能量贮存、转换材料,其原理是:金属吸留氢形成金属氢化物,然后对该金属氢化物加热,并把它放置在比其平衡压低的氢压力环境中使其放出吸留的氢,其反应式如下:37式中,M---金属;MHn---金属氢化物P---氢压力;H---反应的焓变化),()(22pHMn气固放氢,吸热吸氢,放热HMHnn)(2固反应进行的方向取决于温度和氢压力。38实际上,上式表示反应过程具有化学能(氢)、热能(反应热)、机械能(平衡氢气压力)的贮存和相互转换功能。),()(22pHMn气固放氢,吸热吸氢,放热HMHnn)(2固39这种能量的贮存和相互转换功能可用于氢或热的贮存或运输、热泵、冷气暖气设备、化学压缩机、化学发动机、氢的同位素分离、氢提纯和氢汽车等。40),()(22pHMn气固放氢,吸热吸氢,放热HMHnn)(2固由上面的反应式可知,贮氢材料最佳特性是在实际使用的温度、压力范围内,以实际使用的速度,可逆地完成氢的贮藏释放。41实际使用的温度、压力范围是根据具体情况而确定的。一般是从常温到400℃,从常压到100atm左右,特别是以具有常温常压附近的工作的材料作为主要探讨的对象。42具有常温常压附近工作的纯金属的氢化物中,显示出贮氢材料性能的有钒的氢化物(VH2)和镁的氢化物(MgH2)。但是MgH2在纯金属中反应速度很慢,没有实用价值。43许多金属合金与氢形成合金氢化物的反应具有下式所示的可逆反应。),()(22pHMn气固放氢,吸热吸氢,放热HMHnn)(2固44贮氢合金材料都服从的经验法则是“贮氢合金是氢的吸收元素(IA—IVA族金属)和氢的非吸收元素(VIA-VIII族金属)所形成的合金”。如在LaNi5里La是前者,Ni是后者;在FeTi里Ti是前者,Fe是后者。即,合金氢化物的性质介于其组元纯金属的氢化物的性质之间。45然而,氢吸收元素和氢非吸收元素组成的合金,不一定都具备贮氢功能。例如在Mg和Ni的金属间化合物中,有Mg2Ni和MgNi2。Mg2Ni可以和氢发生反应生成Mg2NiH4氢化物,而MgNi2在100atm左右的压力下也不和氢发生反应。46另外,作为La和Ni的金属间化合物,除LaNi5外,还有LaNi,LaNi2等。LaNi,LaNi2也能和氢发生反应,但生成的La的氢化物非常稳定,不释放氢,反应的可逆性消失了。47因此,作为贮氢材料的另一个重要条件是要存在与合金相的金属成分一样的氢化物相。例如LaNi5H6相对于LaNi5,Mg2NiH4相对于Mg2Ni那样。48总之,金属(合金)氢化物能否作为能量贮存、转换材料取决于氢在金属(合金)中吸收和释放的可逆反应是否可行。49氢在金属合金中的吸收和释放又取决于金属合金和氢的相平衡关系。影响相平衡的因素为温度、压力和组成成分,这些参数就可用于控制氢的吸收和释放过程。503、金属氢化物的相平衡和热力学金属-氢系的相平衡由温度T、压力p和组成成分c三个状态参数控制。用温度、压力、成分组成二元直角坐标可以完

1 / 134
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功