建立一个属于自己的建立一个属于自己的建立一个属于自己的建立一个属于自己的AVRAVRAVRAVR的的的的RTOSRTOSRTOSRTOS自从03年以来,对单片机的RTOS的学习和应用的热潮可谓一浪高过一浪.03年,在离开校园前的,非典的那几个月,在华师的后门那里买了本邵贝贝的《UCOSII》,通读了几次,没有实验器材,也不了了之。在21IC上,大家都可以看到杨屹写的关于UCOSII在51上的移植,于是掀起了51上的RTOS的热潮。再后来,陈明计先生推出的smallrots,展示了一个用在51上的微内核,足以在52上进行任务调度。前段时间,在ouravr上面开有专门关于AVR的Rtos的专栏,并且不少的兄弟把自己的作品拿出来,着实开了不少眼界。这时,我重新回顾了使用单片机的经历,觉得很有必要,从根本上对单片机的RTOS的知识进行整理,于是,我开始了编写一个用在AVR单片机的RTOS。当时,我所有的知识和资源有:Proteus6.7可以用来模拟仿真avr系列的单片机WinAVRv2.0.5.48基于GCCAVR的编译环境,好处在于可以在C语言中插入asm的语句mega81K的ram有8K的rom,是开发8位的RTOS的一个理想的器件,并且我对它也比较熟悉。写UCOS的JeanJ.Labrosse在他的书上有这样一句话,“渐渐地,我自然会想到,写个实时内核直有那么难吗?不就是不断地保存,恢复CPU的那些寄存器嘛。”好了,当这一切准备好后,我们就可以开始我们的Rtosformega8的实验之旅了。本文列出的例子,全部完整可用。只需要一个文件就可以编译了。我相信,只要适当可用,最简单的就是最好的,这样可以排除一些不必要的干扰,让大家专注到每一个过程的学习。第一篇:函数的运行在一般的单片机系统中,是以前后台的方式(大循环+中断)来处理数据和作出反应的。例子如下:makefile的设定:运行WinAvr中的Mfile,设定如下MCUType:mega8Optimizationlevel:sDebugformat:AVR-COFFC/C++sourcefile:选译要编译的C文件#includeavr/io.hvoidfun1(void){unsignedchari=0;while(1){PORTB=i++;PORTC=0x01(i%8);}}intmain(void){fun1();}首先,提出一个问题:如果要调用一个函数,真是只能以上面的方式进行吗?相信学习过C语言的各位会回答,No!我们还有一种方式,就是“用函数指针变量调用函数”,如果大家都和我一样,当初的教科书是谭浩强先生的《C程序设计》的话,请找回书的第9.5节。例子:用函数指针变量调用函数#includeavr/io.hvoidfun1(void){unsignedchari=0;while(1){PORTB=i++;PORTC=0x01(i%8);}}void(*pfun)();//指向函数的指针intmain(void){pfun=fun1;//(*pfun)();//运行指针所指向的函数}第二种,是“把指向函数的指针变量作函数参数”#includeavr/io.hvoidfun1(void){unsignedchari=0;while(1){PORTB=i++;PORTC=0x01(i%8);}}voidRunFun(void(*pfun)())//获得了要传递的函数的地址{(*pfun)();//在RunFun中,运行指针所指向的函数}intmain(void){RunFun(fun1);//将函数的指针作为变量传递}看到上面的两种方式,很多人可能会说,“这的确不错”,但是这样与我们想要的RTOS,有什么关系呢?各位请细心向下看。以下是GCC对上面的代码的编译的情况:对main()中的RunFun(fun1);的编译如下ldir24,lo8(pm(fun1))ldir25,hi8(pm(fun1))rcallRunFun对voidRunFun(void(*pfun)())的编译如下/*voidRunFun(void(*pfun)())*//*(*pfun)();*/.LM6:movwr30,r24icallret在调用voidRunFun(void(*pfun)())的时候,的确可以把fun1的地址通过r24和r25传递给RunFun()。但是,RTOS如何才能有效地利用函数的地址呢?第二篇:人工堆栈在单片机的指令集中,一类指令是专门与堆栈和PC指针打道的,它们是rcall相对调用子程序指令icall间接调用子程序指令ret子程序返回指令reti中断返回指令对于ret和reti,它们都可以将堆栈栈顶的两个字节被弹出来送入程序计数器PC中,一般用来从子程序或中断中退出。其中reti还可以在退出中断时,重开全局中断使能。有了这个基础,就可以建立我们的人工堆栈了。例:#includeavr/io.hvoidfun1(void){unsignedchari=0;while(1){PORTB=i++;PORTC=0x01(i%8);}}unsignedcharStack[100];//建立一个100字节的人工堆栈voidRunFunInNewStack(void(*pfun)(),unsignedchar*pStack){*pStack--=(unsignedint)pfun8;//将函数的地址高位压入堆栈,*pStack--=(unsignedint)pfun;//将函数的地址低位压入堆栈,SP=pStack;//将堆栈指针指向人工堆栈的栈顶__asm____volatile__(RET\n\t);//返回并开中断,开始运行fun1()}intmain(void){RunFunInNewStack(fun1,&Stack[99]);}RunFunInNewStack(),将指向函数的指针的值保存到一个unsignedchar的数组Stack中,作为人工堆栈。并且将栈顶的数值传递组堆栈指针SP,因此当用ret返回时,从SP中恢复到PC中的值,就变为了指向fun1()的地址,开始运行fun1().上面例子中在RunFunInNewStack()的最后一句嵌入了汇编代码ret,实际上是可以去除的。因为在RunFunInNewStack()返回时,编译器已经会加上ret。我特意写出来,是为了让大家看到用ret作为返回后运行fun1()的过程。第三篇:GCC中对寄存器的分配与使用在很多用于AVR的RTOS中,都会有任务调度时,插入以下的语句:入栈:__asm____volatile__(PUSHR0\n\t);__asm____volatile__(PUSHR1\n\t);......__asm____volatile__(PUSHR31\n\t);出栈__asm____volatile__(POPR31\n\t);......__asm____volatile__(POPR1\n\t);__asm____volatile__(POPR0\n\t);通常大家都会认为,在任务调度开始时,当然要将所有的通用寄存器都保存,并且还应该保存程序状态寄存器SREG。然后再根据相反的次序,将新任务的寄存器的内容恢复。但是,事实真的是这样吗?如果大家看过陈明计先生写的smallrots51,就会发现,它所保存的通用寄存器不过是4组通用寄存器中的1组。在WinAVR中的帮助文件avr-libcManual中的RelatedPages中的FrequentlyAskedQuestions,其实有一个问题是WhatregistersareusedbytheCcompiler?回答了编译器所需要占用的寄存器。一般情况下,编译器会先用到以下寄存器1Call-usedregisters(r18-r27,r30-r31):调用函数时作为参数传递,也就是用得最多的寄存器。2Call-savedregisters(r2-r17,r28-r29):调用函数时作为结果传递,当中的r28和r29可能会被作为指向堆栈上的变量的指针。3Fixedregisters(r0,r1):固定作用。r0用于存放临时数据,r1用于存放0。还有另一个问题是Howtopermanentlybindavariabletoaregister?,是将变量绑定到通用寄存器的方法。而且我发现,如果将某个寄存器定义为变量,编译器就会不将该寄存器分配作其它用途。这对RTOS是很重要的。在InlineAsm中的CNamesUsedinAssemblerCode明确表示,如果将太多的通用寄存器定义为变量,刚在编译的过程中,被定义的变量依然可能被编译器占用。大家可以比较以下两个例子,看看编译器产生的代码:(在*.lst文件中)第一个例子:没有定义通用寄存器为变量#includeavr/io.hunsignedcharadd(unsignedcharb,unsignedcharc,unsignedchard){returnb+c*d;}intmain(void){unsignedchara=0;while(1){a++;PORTB=add(a,a,a);}}在本例中,add(a,a,a);被编译如下:movr20,r28movr22,r28movr24,r28rcalladd第二个例子:定义通用寄存器为变量#includeavr/io.hunsignedcharadd(unsignedcharb,unsignedcharc,unsignedchard){returnb+c*d;}registerunsignedcharaasm(r20);//将r20定义为变量aintmain(void){while(1){a++;PORTB=add(a,a,a);}}在本例中,add(a,a,a);被编译如下:movr22,r20movr24,r20rcalladd当然,在上面两个例子中,有部份代码被编译器优化了。通过反复测试,发现编译器一般使用如下寄存器:第1类寄存器,第2类寄存器的r28,r29,第3类寄存器如在中断函数中有调用基它函数,刚会在进入中断后,固定地将第1类寄存器和第3类寄存器入栈,在退出中断又将它们出栈。第四篇:只有延时服务的协作式的内核CooperativeMultitasking前后台系统,协作式内核系统,与占先式内核系统,有什么不同呢?记得在21IC上看过这样的比喻,“你(小工)在用厕所,经理在外面排第一,老板在外面排第二。如果是前后台,不管是谁,都必须按排队的次序使用厕所;如果是协作式,那么可以等你用完厕所,老板就要比经理先进入;如果是占先式,只要有更高级的人在外面等,那么厕所里无论是谁,都要第一时间让出来,让最高级别的人先用。”#includeavr/io.h#includeavr/Interrupt.h#includeavr/signal.hunsignedcharStack[200];registerunsignedcharOSRdyTblasm(r2);//任务运行就绪表registerunsignedcharOSTaskRunningPrioasm(r3);//正在运行的任务#defineOS_TASKS3//设定运行任务的数量structTaskCtrBlock//任务控制块{unsignedintOSTaskStackTop;//保存任务的堆栈顶unsignedintOSWaitTick;//任务延时时钟}TCB[OS_TASKS+1];//防止被编译器占用registerunsignedchartempR4asm(r4);registerunsignedchartempR5asm(r5);registerunsignedchartempR6asm(r6);registerunsignedchartempR7asm(r7);registerunsignedchartempR8