1.1认识三角形(1)【教学目标】1、通过实践活动,理解三角形三个内角的和等于180o2、理解三角形的一个外角等于和它不相邻的两个内角的和3、合适用三角形的内角和外角的性质简单的几何问题4、了解三角形的分类【教学重点、难点】1.本节教学的重点是三角形三个内角和等于180o的性质是本节重点。2.例3是立体图形,涉及的角之间的关系不易辨认,是本节难点。【教学过程】1,合作学习:①请每个学生利用手中的三角形(已备),把三角形的三个角撕(或剪)下来,然后把这三个角拼起来,然后观察这三个角拼成了一个什么角?②请学生归纳这一结论,教师板书:三角形的三个内角的和等于180O2、三角形内角和性质的应用①口答:△ABC中,∠A=45O,∠B=60O,求∠C②△ABC中,∠A=57O18,,∠B=46O49,。求∠C③△ABC中,∠A=∠B,∠C=110O,求∠A,∠B④△ABC中,∠A:∠B:∠C=1:2:3,求这个三角形的三个内角。3、由上题得出图中三角形的形状①②得出的三角形的三个角都是锐角,这样的三角形称之为锐角三角形③得出的三角形有一个角是钝角,这样的三角形称之为钝角三角形④得出的三角形有一个角是直角,这样的三角形称之为直角的三角形若一个三角形为Rt△,那么它的其余两个锐角互余。4、三角形的外角:①定义:三角形的一边和另一边相邻边组成的角,叫做三角形的外角。由图得:∠BCE+∠ACB=180O而∠A+∠B+∠ACB=180O∴∠BCE=∠A+∠B从而得到定理:三角形的一个外角等于和它不相邻的两个内角的和②外角也并不一定绝对,要会看一个角之是内角还是外角。5、练习:1)△ABC中,∠ACD=120O∠A=50O,求∠B、∠ACD2)如书本例题3),已知,在△ABC中,∠C=Rt∠,D是BC上一点,已知∠1=∠2,∠B=25O,求∠BAD数。6:小结:②角形的内角和性质②认识三角形的外角的概念,并能准确寻找外角和内角7,布置作业1.1认识三角形(2)【教学目标】1、使学生知道三角形的角平分线和中线的定义,并能熟练地画出这两种线段2、能应用三角形的角平分线和中线的性质解决简单的数学问题【教学重点、难点】教学重点、难点:三角形的角平分线、中线的定义及画图是本节课的重点,利用三角形的角平分线和中线的性质解决有关的计算问题是本节难点。【教学过程】一、创设情景,引入新课1、让每个学生拿一张三角形纸片,把其中一个内角对折一次,使角的两边重合,得到一条折痕。(问学生折痕是什么形状?)2、请每位学生用量角器量一量被折痕分割的二个角的大小,得到什么结论?(得到折痕平分这个内角)引出概念:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。(让学生理解三角形的角平分线的形状是线段)一、合作交流,探讨结论请同学回答下面的问题在一个三角形中有几条角平分线?请每位同学在不同类型的三角形中画一画,与同伴交流你发现了什么?在此过程中,教师可以用几何画板制作的动画演示,在锐角三角形、钝角三角形、直角三角形中三条角平分线的特点。(三条线都在三角形的内部,三条线相交于一点)任意画一个∆ABC,用刻度尺画BC的中点D,连结AD引出概念:在三角形中,连结一个顶点与它对边中点的线段,叫做这个三角形的中线。(让学的中线的形状也是线段生理解三角形)请同学回答问题:在一个三角形中有几条中线?请每位同学在不同类型的三角形中画一画,与同伴交流你发现了什么?在此过程中,教师可以用几何画板制作的动画演示,在锐角三角形、钝角三角形、直角三角形中三条中线的特点。(三条线都在三角形的内部,三条线相交于一点)ABCDpwABCDEFGHIJKLMNOPQRSmtzABCDEFGHIJKLMNOPQR三角形的角平分线、中线用几何语言表达方式:如图在∆ABC中,∠BAD=∠CAD,AD是∆ABC的角平分线;在∆ABC中,D是BC的中点(或BD=DC),AD是∆ABC中BC边上的中线。三、应用概念,解决问题范例1如图AE是∆ABC的角平分线,已知∠B=450,∠C=600,求下列角∠BAE,∠AEB。首先让学生仔细观察图形,分析已知条件,教师作好引导四、巩固练习五、拓展与应用让学生在熟悉概念的基础上,做更灵活的计算与应用六、学生总结让学生回顾本节课的主要内容七、作业布置1.2定义与命题(1)【教学目标】1.了解定义的含义.2.了解命题的含义.3.了解命题的结构,会把一个命题写成“如果……那么……”的形式.【教学重点、难点】重点:命题的概念.难点:象范例中第(3)题,这类命题的条件和结论不十分明显,改写成“如果…那么…”形式学生会感到困难,是本节课的难点.【教学过程】一、创设情景,导入新课二、合作交流,探求新知1.定义概念的教学从以上两个问题中引入定义这个概念:一般地,能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义.2.命题概念的教学判断下列语句在表述形式上,哪些对事情作了判断?哪些没有对事情作出判断?(1)对顶角相等;(2)画一个角等于已知角;(3)两直线平行,同位角相等;(4)a,b两条直线平行吗?(5)鸟是动物;(6)若42a,求a的值;(7)若22ba,则ba.答案:句子(1)(3)(5)(7)对事情作了判断,句子(2)(4)(6)没有对事情作出判断.其中(1)(3)(5)判断是正确的,(7)判断是错误的.在此基础上归纳出命题的概念:一般地,对某一件事情作出正确或不正确的判断的句子叫做命题.象句子(1)(3)(5)(7)都是命题;句子(2)(4)(6)都不是命题.说明:讲解定义、命题的含义时,要突出语句的作用.句子根据其作用分为判断、陈述、疑ABCDE问、祈使四个类别.定义属于陈述句,是对一个名称或术语的意义的规定.而命题属于判断句或陈述句,且都对一件事情作出判断.与判断的正确与否没有关系.3.命题的结构的教学告诉学生现阶段我们在数学上学习的命题可看做由题设(或条件)和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.这样的命题可以写成“如果……那么……”的形式,其中以“如果”开始的部分是条件,“那么”后面的部分是结论.如“两直线平行,同位角相等”可以改写成“如果两条直线平行,那么同位角相等”.三、师生互动运用新知下面通过书本中的范例介绍如何找出一个命题的条件和结论,并改写成“如果……那么……”的形式.例1指出下列命题的条件和结论,并改写成“如果……那么……”的形式:(1)三条边对应相等的两个三角形全等;(2)在同一个三角形中,等角对等边;(3)对顶角相等;(4)同角的余角相等;(5)三角形的内角和等于180°;(6)角平分线上的点到角的两边距离相等.例2下列语句中,哪些是命题,哪些不是命题?(1)若ab,则ab;(2)三角形的三条高交于一点;(3)在ΔABC中,若ABAC,则∠C∠B吗?(4)两点之间线段最短;(5)解方程0322xx;(6)1+2≠3.答案:(1)(2)(4)(6)是命题,(3)(5)不是命题.例3(1)请给下列图形命名,,并给出名称的定义:①②(2)观察下列这些数,找出它们的共同特征,给以名称,并作出定义:-52,-2,0,2,8,14,20,…答案:能被2整除的整数是偶数.四总结回顾,反思内化学生自由发言,这节课学了什么?教师做补充.三个内容:分组成题是由条件和结论两部命题的的结构:通常命的判断的句子事情作出正确或不正确命题的概念:对某一件子名称或术语的意义的句定义的含义:规定某一六、布置作业巩固新知1.2定义与命题(2)【教学目标】知识目标:理解真命题、假命题、公理和定义的概念能力目标:会判断一个命题的真假,会区分定理、公理和命题。情感目标:通过对真假命题的判断,培养学生树立科学严谨的学习方法。【教学重点、难点】重点:判断一个命题的真假是本节的重点。难点:公理、命题和定义的区别。【教学过程】(一):合作学习:1:复习命题的概念,思考下列命题的条件是什么?结论是什么?(1)边长为a(a>0)的等边三角形的面积为√3/4a2.(2)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.(3)对于任何实数x,x2<0.提问:上述命题中,哪些正确?哪些不正确?2:得出真命题、假命题的概念:正确的命题称为真命题,不正确的命题称为假命题。3:把学生分成两组,一组负责说命题,然后指定第二组中某一个人来回答是真命题还是假命题(二):举例:判断下列命题是真命题还是假命题(1)x=1是方程x2-2x-3=0的解。(2)x=2是方程(x2–4)/(x2-3x+2)=0的解。(3)如图,若∠1=∠2,则∠3=∠4。(4)一个图形经过旋转变化,像和原图形全等。(三)讲述公理和定义1:公理:人类经过长期实践后公认为正确的命题,作为判断其他命题的依据。这样公认为正确的命题叫做公理。例如:“两点之间线段最短”,“一条直线截两条平行所得的同位角相等”然后提问学生:你所学过的还有那些公理2:定理:用推理的方法判断为正确的命题叫做定理。定理也可以作为判断其他命题真假的依据。3:举例请用学过的公理或定理说明下面这个命题的正确性:“等腰三角形底边上的高线、顶角的角平分线互相重合“(四)作业:1.3证明(1)【教学目标】1.了解证明的含义。2.体验、理解证明的必要性。3.了解证明的表达格式,会按规定格式证明简单命题。【教学重点、难点】重点:本节教学的重点是证明的含义和表述格式。难点:本节教学的难点是按规定格式表述证明的过程。【教学过程】一、新课引入教师借助多媒体设备向学生演示课内节前图:比较线段AB和线段CD的长度。通过简单的观察,并尝试用数学的方法加以验证,体会验证的必要性和重要性二、新课教学1、合作学习参考教科书P74:一组直线a、b、c、d、是否不平行(互相相交),请通过观察、先猜想结论,并动手验证2、证明的引入(1)命题“等腰直角三角形的斜边是直角边的2倍”是真命题吗?请说明理由分析:根据需要画出图形,用几何语言描述题中的已知条件和要说明的结论。教师对具体的说理过程予以详细的板书。小结归纳得出证明的含义,让学生体会证明的初步格式。(2)通过例2的教学理解证明的含义,体会证明的格式和要求例2、证明命题“如果一个角的两边分别平行于另一个角的两边,且方向相同,那么这两个角相等”是真命题。分析:根据需要画出图形,用几何语言描述题中的已知条件、以及要证明的结论(求证)。小结:证明几何命题的表述格式(1)按题意画出图形;(2)分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论;(3)在“证明”中写出推理过程。三、例题教学例2、已知:如图,AC与BD相交于点O,AO=CO,BO=DO。求证:AB∥CD(证明略)四、练习巩固P76课内练习3五、小结(1)证明的含义(2)真命题证明的步骤和格式(3)思考、探索:假命题的判断如何说理、证明?六、作业布置1.3证明(2)【教学目标】1.进一步体会证明的含义;2.探索并理解三角形内角和定理的几何证明;3.进一步熟练证明的方法和表述;4.让学生体验从实验几何向推理几何的过渡.OABCDABCBCAPDEBCAED123BCADO【教学重点、难点】重点:探索三角形内角和定理的证明,进一步掌握证明的方法和表述.难点:例1是由较复杂的题设条件得出若干结论,用到多个定理,是本节的难点.【教学过程】一、复习证明的一般格式和表述,导入新课.通过一个简单的命题的求证过程,让学生自己回顾证明一个命题的一般格式,并用自己的语言进行表述.(1)求证:线段垂直平分线上的点到线段两个端点的距离相等.设问:①如何写出已知、求证,并画出图形②如何进行证明(可由学生口述)(2)根据上述题目结合学生的回答引导学生归纳出证明一个命题的一般格式:①按题意画出图形;②分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论;③在“证明”中写出推理过程.二、合作交流,探究新知(一)通过一个简单的例子向学生简介把一个由实验得到的几何命题经过推理的方法加以论证,让学