2.6对数与对数函数基础梳理1.对数及对数的运算(1)定义:ab=N⇔b=______(a0,且a≠1).(2)积、商、幂、方根的的对数(M、N都是正数,a0,且a≠1,n0)①loga(MN)=_______________.②=________________.③logaMn=____________.logaMNnlogaMlogaNlogaM+logaNlogaM-logaN(3)对数的换底公式及对数的恒等式①alogab=________(对数恒等式).②logab=________(换底公式).③=________.④logab=________.常用对数:以10为底的对数叫做________,a的常用对数记作________.自然对数:以无理数e=2.71828…为底的对数叫做________,N的自然对数记作________.bloglogccbaloganbmb1logalnN常用对数lgN自然对数nabogml经典例题对数的化简与求值【例】计算下列各题.258(1)5040lglglglglg25525884=1.5055040404lglglglglglglglglg解:214232352727(2)loglog[4log10-(33)-log7]33234323523=loglog[2log10(3)2]3解:原式3521log3log[2log1032]4351log3log541422(3)2(lg2)lg2lg522121lgg2=lg2(21g2+lg5)21)lg解:原式=lg2(lg2+lg5)+|lg2-1|=lg2lg(25)+1-lg2=1.对数式的化简思路:•(1)应用公式,尽量把对数化为同底的和、差、积、商的运算。•(2)将对数的和、差、倍数,转化为对数真数的积、商、幂。•(3)约分、合并同类项,求出具体的值。(1)求lg25+lg8+lg5lg20+(lg2)2的值;23(2)设,求的值.3515ab11ab解析:(1)原式=lg52+lg23+lg5(1+lg2)+(lg2)2=2lg5+2lg2+lg5+lg2×lg5+(lg2)2=2+lg5+lg2(lg5+lg2)=2+lg5+lg2=3.233515ab(2)∵两边取以为底的对数,得151515log3log51ab151511log3,log5,ab15151511log3log5log152ab变式练习2.对数函数的图象与性质a10a1图象定义域:值域:性质当0x1时,y∈_______;当x1时,y∈______当x1时,y∈______当0x1时,y∈___;定点当x=1时,y=0即过定点单调性在(0,+∞)上为____函数在(0,+∞)上为____函数增(0,+∞)(0,+∞)RR(1,0)(-∞,0)(0,+∞)(0,+∞)(-∞,0)减基础达标3不等式log2(x+2)2的解集为________.1、(lg5)2+lg2∙lg50=________.2若2x-1=10,则x=________.解析:原式=(lg5)2+lg2×[lg5+1]=(lg5)2+lg2∙lg5+lg2=lg5[lg5+lg2]+lg2=lg5+lg2=1.1112lg解析:两边取常用对数,则lg2x-1=lg10=1,∴(x-1)lg2=1,∴x-1=,.12lg112xlg解析:x+222⇒x2.(2,+∞)4.已知log7[log3[log2x]]=0,则________12x5.的定义域是________.1232ylogx24解析:由题意知,log3[log2x]=1,∴log2x=3,∴x=23=8,12x122842,13解析:⇒03x-2≤1⇒23x≤3⇒12320320xlogx213x