1测力环系数有关问题的交流大家好!我是《土木工程试验检测技术研究》及《细集料含泥量与含粉量的试验研究》的作者韦汉运,群文件中的“土木工程实用试验资料”有我两本著作的目录及内容简介,如有兴趣,可到群文件下载。下面是我在“工程试验交流千人群(207135730)”与各位网友对测力环系数有关问题的交流,文内的言论代表个人观点,如有不同的见解,欢迎到“工程试验交流千人群(207135730)”、“JTJC.net交通检测①群(144673309)”、“3C3T检测技术交流2群(191047183)”、“3C3T检测技术交流3群(187938137)”交流、探讨。下面是一位网友在“工程试验交流千人群”给出的7.5KN测力环的标定书:下图是我根据该网友给出的该测力环标定书上的数据,经过多次不同方法的线性回归,得到其中的一个方程式为y=29.059x-2791.25。2据上可知,该方程式y=29.059x-2791.25中的系数29.059,与该测力环标定书上的测力环系数29.059完全相同,说明该测力环标定书上的测力环系数,就是按照上面截图的方法进行线性回归得到的。原版本我认为该线性回归方法确定的测力环系数是错误的,其实,该线性回归方法确定的测力环系数也是正确的,只是此方程式y=29.059x-2791.25中x的单位是0.01mm、y的单位是N,且百分表的初始读数为100(0.01mm)。验算:假设百分表实际移动30.7小格,由于该测力环回归时百分表的初始读数为100(0.01mm),故x按130.7(0.01mm)代入方程式,即y=29.059x130.7-2791.25=1006.8(N),与该测力环标定书上的结果相差6.8N。测力环的线性回归有很多种方法,也可以直接用标定书上的数据进行回归,此时方程式y=bx+a中x的单位是mm、y的单位是kN,且百分表的初始读数为1.00(mm)。验算:假设百分表实际移动30.7小格,由于该测力环回归时百分表的初始读数为1.00(mm),故x按1.307(mm)代入方程式,即y=2.906x1.307-2.791=1.0071(kN),与该测力环标定书上的结果相差7.1N。下面是本人推荐的测力环线性回归方法:y为测力环标定时设定的每一级荷载(N),x为达到该级荷载时百分表实际移动的数值(0.01mm),百分表的初始读数为0(0.01mm)。以最后一列数据为例,7500(N)为测力环标定时设定的最后一级荷载,256.8(0.01mm)为达到最后一级荷载(7500N)时百分表实际移动的数值(356.8-100.0=256.8),即百分表从零开始移动至256.8(0.01mm)时,荷载正好为7500N;依此类推其他级荷载及其相应百分表实际移动的数值,则该测力环的线性回归方程式为y=29.059x+114.62。3验算:假设百分表实际移动30.7小格,由于该测力环回归时百分表的初始读数为0(0.01mm),故x按30.7(0.01mm)代入方程式,即y=29.059x30.7+114.62=1006.7(N),与该测力环标定书上的结果相差6.7N。下面截图是我所在项目一个液压千斤顶证书上的数据及计量机构给出的线性回归方程式,该标定书上的回归方法与本人推荐的回归方法应该是一样的。下面截图是我根据该液压千斤顶标定书上的数据进行的线性回归,其回归方程式为y=46.482x+32.891(该液压千斤顶证书的压力表没有初始读数)。4如果不考虑计算方法引起的误差,该方程式y=46.482x+32.891与计量机构给出的线性回归方程式y=46.481x+32.913完全一致。根据上面各种线性回归方法(即最小二乘法)得到的方程式可以看出,线性回归方程式y=bx+a中的a值均不为零,而我们经常使用的测力环系数C,其实就是方程式y=Cx+a中的C值,只是此处的a等于零。因此,下面是我对采用测力环系数计算无侧限抗压强度或CBR值的理解:如果一定要采用测力环系数C计算无侧限抗压强度或CBR值,测力环的系数C,可以采用线性回归方程式y=bx+a中的b值,但是,计量机构有它独特的计算方法。下面截图是我所在项目一个7.5kN测力环标定书上的数据及计量机构给出的测力环系数(注:标定书中手写的测力环系数C=40.13N/0.01mm,为该计量机构标定负责人亲自所写,下面测力环系数的计算方法,为该计量机构标定负责人推荐的计算方法)。5如果采用该计量机构标定负责人推荐的计算方法,则该测力环系数的计算过程如下:(500-0)/(112.9-100.0)=38.760(1000-500)/(125.2-112.9)=40.650(1500-1000)/(137.1-125.2)=42.017(2000-1500)/(149.2-137.1)=41.322(3000-2000)/(174.3-149.2)=39.841(4000-3000)/(199.1-174.3)=40.323(5000-4000)/(224.8-199.1)=38.911(6000-5000)/(250.3-224.8)=39.216(7000-6000)/(289.1-250.3)=25.773则:该测力环系数C=(38.760+40.650+42.017+41.322+39.841+40.323+38.911+39.216)/8=40.13(由于最后一组数据明显与上面各组数据偏差太大,故舍去不计)。说明:上面计算过程左边括号内的数据为实际增加的荷载,右边括号内的数据为实际增加的百分表读数,以最后一组数据为例,左边括号内的数据为(7000-6000)=1000(N),右边括号内的数据为(289.1-250.3)=38.8(0.01mm),也就是说,当测力环的荷载从6000N再增加1000N时,百分表实际移动了38.8(0.01mm),采用1000/38.8=25.773,则表示百分表每移动一个小格(即0.01mm),其荷载将增加25.773N,即25.773N/0.01mm。以上各组数据计算结果的平均值,即为该测力环的系数。如果按本人推荐的测力环线性回归方法:y为测力环标定时设定的每一级荷载(N),x为达到该级荷载时百分表实际移动的数值(0.01mm),百分表的初始读数为0(0.01mm),则该测力环的线性回归方程式为y=40.06x+5.64(由于最后一组数据离散太大,故舍去不计)。6验算:假设百分表实际移动37.1小格,由于该测力环回归时百分表的初始读数为0(0.01mm),故x应该按37.1(0.01mm)代入方程式,即y=40.06x37.1+5.64=1491.9(N),与该测力环标定书上的结果相差8.1N。因此,前面那位网友给出的测力环标定书上的测力环系数,如果按该计量机构标定负责人推荐的方法进行计算,则为:(1000-0)/(130.7-100.0)=32.573(2000-1000)/(163.2-130.7)=30.769(3000-2000)/(196.9-163.2)=29.674(4000-3000)/(231.3-196.9)=29.070(5000-4000)/(267.1-231.3)=27.933(6000-5000)/(303.2-267.1)=27.701(7500-6000)/(356.8-303.2)=27.985则:该测力环系数C=(32.573+30.769+29.674+29.070+27.933+27.701+27.985)/7=29.386(N/0.01mm)。