VAR模型及其在投资组合中的应用

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

二〇一五年七月VAR模型及其在投资组合中的应用内容提要20世纪90年代以来,随着金融衍生产品市场的迅猛发展,加剧了金融市场的波动,2008年的金融危机使得大量的金融机构和投资者破产,风险管理再一次成为金融活动的核心内容。基于VaR的风险管理理论也在巴塞尔协议II的推广下开始广泛地被金融机构所运用,成为目前市场上主流的风险管理工具。本文将VaR及其延伸概念边际VaR和成分VaR的风险管理理论运用到证券市场的投资组合风险调整过程中,选取能够覆盖多数行业的40只个股构成一个投资组合,运用蒙特卡洛法分别计算投资组合在95%的置信水平和持有期为1天的条件下组合的VaR,以此来分析投资组合的风险分布及单只个股的风险贡献度;同时将VaR运用均值-VaR的组合优化理论确定投资组合的最小VaR投资组合,对比调整前后的损益走势图来说明VaR在投资组合风险调整优化过程中的有效性。【关键词】投资组合风险管理VaR均值-VaR组合优化理论一、序言(一)研究背景及意义20世纪90年代以来,随着世界金融市场在业务范围和产品规模上的急剧扩张,使得世界各国经济体之间的一体化和联动性不断增强,近些年的金融危机在国家之间的传导也更为迅速,往往带来整个行业的衰退和大量金融机构的破产。08年的全球金融危机最初只是美国房地产市场上的次债危机,但由于涉及大量金融衍生产品如CDO、MBO和全球范围内的大量机构投资者,使得次债危机最终演变为全球范围内的金融危机,雷曼兄弟等众多金融机构破产倒闭,全球经济也迅速进入衰退周期。因此可以总结出:世界经济一体化和联动性的增强在横向上扩大了金融风险影响的范围。对此,以巴塞尔委员会为首的全球金融监管机构开始重新制定金融风险管理标准,风险管理再次成为金融活动的核心内容。尤其对于证券公司、基金公司来说,他们持有的不再是单一的一种资产,而是众多资产组成的一揽子投资组合,如何运用一种有效的风险管理标准全面地衡量组合的风险,成为他们首要考虑的问题,VaR正是在这种背景下产生并快速发展起来的。早期的VaR只是作为一种衡量风险的方式,便于向管理层和决策者汇报,是一种消极被动的运用;随后管理者发现可以运用VaR进行主动的风险调控和绩效评估,为优化资源配置提供依据,此时VaR已经演变成为一种主动的积极的管理策略。目前,VaR作为风险管理领域的主流工具,广泛地被银行、保险公司、机构投资者、非金融机构及监管层机构所运用,应用的范围不仅限于单个的资产或者项目,还包括投资组合、衍生金融工具如理财产品定价、信用风险的度量等方面。而我国的资本市场起步晚,但是在规模和数量上却发展迅速。在全球经济联动性增强、我国资本市场开放程度不断加大的趋势下,投资者面临的风险将会更加复杂、国际化、多样化,这对投资者的管理能力和风险控制能力提出了更高的要求。尤其是对于管理资金庞大的基金管理人来说,任何细微的失误都会造成重大的损失。因此,VaR风险衡量法的推广在我国资本市场上具有很大的意义。首先,对于证券市场上的投资者或是基金管理人来说,随着投资组合中的股票数量逐渐增多,投资者希望了解组合整体的风险水平,VaR作为风险控制依据,基金公司可以为每个交易员设定VaR数额限制,能够有效地约束交易员的过度投机行为,避免一些重大的损失。同时,VaR可以作为基金业绩评估标准,在投资活动中风险和收益呈正向关系,高收益往往伴随着高风险,因此目前基金业绩评估指标中不再简单地以收入高低来评价业绩,而是开始将风险因素考虑到绩效评估中,防止基金管理人过度追求高收益而忽略对风险的防范。(二)文献综述1.VaR研究现状关于VaR的研究,最早由JP.Morgan推出的VaR(Value-at-Risk)模型,之后发展成为“信用风险估价”(CreditValueatRisk)模型,主要是在正态分布的假定下用RiskMetrics计算VaR。随后其他学者将VaR的风险管理理论运用到投资组合、衍生金融工具如理财产品定价、信用风险的度量等各个方面,并在此基础上延伸出CVaR、MVaR等概念。RachelCampbell和RonaldHuisman、KeesKodeijk在2001年通过实证研究用历史模拟法和VaR风险管理模型对资产组合进行选择,然后同基于收益率正态分布假设的均值—方差模型资产组合的结果进行对比,得出传统的均值—方差模型会低估风险资产组合所面临的市场风险的结论。GiuseppeAlesiiT在2005年认为现金流的管理在实值期权的风险管理中具有重要地位,因此将VaR引入到现金流风险管理中,用马尔科夫链的蒙特卡洛模拟法对现金流的净现值建模,定义未来每一个时期的现金流CFs,从而对代表波动性的VaR进行估算,在此基础上考虑实值期权的最优决策问题,结论是基于净现值的VaR不仅能够保值,还可以降低操作风险。ChonghuiJiang,YongkaiMa,YunbiAn在2013年将VaR的风险管理思想运用到保险策略中,提出了基于VaR的保险组合策略(VBPI)。结合中国保险市场的分析,假定风险资产符合几何布朗运动,通过把VBPI策略和传统的买入持有策略(B&H)、固定投资比例CPPI策略的对比,用组合收益率表现来说明VBPI法的优越性。结果显示在考虑交易成本的条件下CPPI策略只能维持最低价值,而VBPI能在很大程度上解释组合保护条约的内涵;同时两种策略都能够对冲风险下行带来的损失,保险价值和置信水平越高,则限制风险下行的效果越明显。在国内,VaR作为一种新的衡量风险的方法,主要运用在资本市场中。彭寿康在2003年利用上证A股指数、上证30指数收益率,用VaR的历史模拟法对股价指数进行了考察,结果表明我国股价指数收益率存在明显的尖峰厚尾特征,用历史模拟法和Iosistic分布模型比较适合度量股价指数的市场风险。目前,基于VaR度量金融风险已成为国外大多数金融机构广泛采用的衡量金融风险大小的方法。VaR模型提供了衡量市场风险和信用风险的大小,不仅有利于金融机构进行风险管理,而且有助于监管部门有效监管。2.投资组合优化问题的研究现状投资组合优化理论最早源于马克维茨的组合选择理论,目的在于通过多样化的投资来分散风险。目前学术界以均值-方差组合优化模型为基础,衍生出一系列组合优化模型,如考虑VaR、CVaR等因素,在国际上的研究进展有:GordonJ.Alexandera,AlexandreM.Baptistab在2002年就将VaR运用到投资组合选择中,通过对均值-VaR模型四个方面的研究来证明其优越性。第一,对比了均值-方差模型和均值-VaR模型的有效前沿的变化;第二,怎么将均值-VaR与期望效用函数最大求解相结合;对比机构运用方差和VaR分别代替风险时的最优化结果,进行实际经济含义的验证。RobertJ.Elliott、TakKuenSiu和AlexBadescu在2010年提出了一种基于马尔科夫链主导控制下的BS经济考虑下的均值方差组合优化模型的解决方式。他们认为主流的马克维茨的均值方差模型是基于均值和方差这两个静态变量的数学模型,只考虑了单一时期经济内的组合最优化,并且这种假设只有在收益率分布符合正态假定,同时经济体的效用函数是二次函数时才有效。在基于马尔科夫链的模型中连续时间和马尔科夫链的假定暗含着经济体的不同状态,通过分离定理和随即最大化原则,可以放宽马尔科夫链的限制,为均值方差模型提供一种更直接详细的解。投资组合优化理论在国内主要的运用是结合沪深股市的股票组合,对组合的风险进行衡量,以达到降低风险的目的;或是结合交易费用、卖空等因素下的最有投资策略解,国内主要的研究现状如下:王波、高岳林在2008年将基于VaR的条件风险价值CVaR运用到中国沪深两市的组合风险管理中,因为CVaR可以度量置信水平下的平均损失,可以很好地处理厚尾问题。在实证中选取沪深股市的16只股票构成投资组合,考虑市场不允许卖空和整手买入的约束机制下建立CVaR投资组合,运用差分进化法进行求解,通过计算不同收益阈值下的买入量、损失值、收益值、资金投入量等有效地验证了CVaR的有效性。蒋翠侠、许启发、张世英在2013年提出由于金融资产收益多数具有的非正态性和厚尾分布,同时消费者的效用函数可能是二阶以上函数时,需要考虑更高阶矩的时变特性,为此建立基于多目标优化技术和效用理论的高阶距动态投资模型。实证中通过对全球几个主要股票市场的研究发现:金融市场收益率存在高阶矩、并且具有时变性,对组合投资决策有显著的影响。二、VaR理论概述风险管理的首要任务是选定合适的风险度量方法。市场上的风险度量方法很多,主要有资产收益率的标准差σ法、β系数、判定系数R、及在险价值VaR法。而VaR凭借其独特优势成为国际上风险管理的主流方法,下面我们将详细介绍VaR的理论及其优越性。(一)VaR的定义VaR(ValueatRisk)即在险价值,衡量投资者对某项金融资产在Δt的持有期内,给定置信水平c的条件下,投资组合P的最大损失值是多少,用公式表示为:()1probpVaRc其中,ΔP=P−P为在时间内的损益函数;P0为期初价值;Pt为期末价值。VaR的定义中首要涉及持有期和置信水平的设定。常用的置信水平是99%、95%、90%,风险管理部门会根据自己的风险偏好来选择置信水平。比如社保基金、养老基金等机构对风险比较敏感,就会要求相对较高的置信水平,而如股票型基金等追求高风险高收益的机构,则会选择相对低一点的置信水平。持有期一般与投资组合波动率的大小呈正比,持有期越长,波动率越大。期货市场及衍生品市场对风险波动比较敏感,适合以每日为周期计算VaR,其他一些期限较长的头寸如养老基金等可以每周作为计算周期。(二)VaR的计算原理假定投资组合的期初价值为P0,在Δt的投资期限内收益率为R,则期末价值为P=P0(1+R)。在置信度为c的条件下,投资组合的最低价值P*=P0(1+R*),R*假定为持有期内的最低收益率。此时,可以算出投资组合最低价值状态下相对于其均值的风险差值,即为相对VaR,公示表示为:**0()()rVaREpppR也可以计算出最低价值相对于期初状态时的风险差值,即为绝对VaR,用公式表示为:**00aVaRpppR由定义可以看出,求解VaR的实质就是求解一段时期内在一定的置信水平下,投资组合的最低收益值P*或者最低收益率R*。假定投资组合的年收益率是随机变量,服从均值为μ和波动率为σ的分布。同时假定投资组合的年收益率与投资期限无关,则在的持有期限内,组合的收益率和方差分别μΔt和Δtσ2。此时相对VaR为:***00()()()rVaREpppRptR所以,只要求出在置信水平c下的R*或者P*,VaR就迎刃而解。在这里,我们要考虑到收益率R*所服从的分布,分为一般分布和正态分布两种。(1)一般分布条件下假定未来投资收益P的概率密度函数是f(p),在给定置信水平c,投资组合未来的最低价值P*可以表示为:在一般分布条件下,对于分布的离散或是连续、瘦尾或是厚尾都没有限制,任何分布状况都适用。(2)正态分布条件下:由于正态分布的很多特性可以将VaR的计算大大简化,是一种更优的计算方法。假定标准正态分布密度函数为ϕ(ε),投资组合的最低价值**0(1)ppR,此时*R一般为负数,则其中,a(a0)是标准正态分布条件下置信水平c的分位数。同时,推出最低收益率R*表示为:*Ra**()()1pafpdpprobppc**1()()()pRRacfpdpfrdrd则可以计算出持有期限内的绝对和相对VaR:**00aVaRpppR***00()()()rVaREpppRptR(三)VaR的计算方法由于VaR的计算涉及到收益率的分布假定问题,目前计算方法主要有两大不同的类别:参数法和非参数法。参数法是假定收益率服从随机独立的正态分布为前提的,包括方差-协方差法和蒙特卡洛模拟法;非参数法则不对收益率的分布做任何假定,主要为历史模拟法。

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功