上海交通大学硕士学位论文微电网中变流器控制策略的多目标优化姓名:王新刚申请学位级别:硕士专业:电力系统及其自动化指导教师:艾芊20090201III///PSCAD/EMTDCABSTRACTIIIMulti-objectiveOptimalControlStrategyofConverterinAMicrogridSystemABSTRACTWithdevelopingofdistributedgeneration(DG),theusageofDGhasbeenoneofthedevelopmentsofpowersystemsinthefuture,especiallywiththehelpofmicrogridtechnology,whichsolvestheproblemsofhighaccesscostsandsingleDGcontrol.Inthesightofthesystem,microgridmakesthegenerators,load,energystoragedevicesandcontroldevices,etc.toformasinglecontrolunit.Andthegeneratorsinthemicrogrid,includingfuelcells,microgasturbines,photovoltaiccells,batteriesandsupercapacitors,areallsmallunitswithelectronicinterface.Microgridnotonlysolvesthelarge-scaleaccessofDGs,takefulladvantagesofthem,butalsogiveusersavarietyofotherbenefits.ThisarticlefocusesontheinvertercontrolstrategiesinthemicrogridandoptimalschedulingforDGsthroughmulti-objectivenicheevolutionaryimmunealgorithm,andasolutionformicrogridcoordinationcontrolawellasenergymanagementhasbeenproposed.Inverterisadistributedgenerationinterfaceforenergyexchange,afterdetailedanalyzingofthecomponents’characteristicsinthemicrogrid,alayeredmicrogridcontrolsystembasedonmulti-agenttechnologyhasbeenproposedinthispaper.ThissystemisdividedintoABSTRACTIVupperandlowerlayers,andthecommunicationbetweenthetwolayersandtheagentsinthelowerlayerisrealizedbyInternetviaEthernet.Theupperlayerisenergymanagementsystem,whichismainlyresponsibleformonitoringthevariouscomponentsandoptimizingthealgorithmtodeterminetheoutputofDGs,anddistributestheresultstotheloweragentbyInternet.Thelowerlayeriscoordinatedcontrolsystem,whichontheonehandiscontrolledbytheupperagents,ontheotherhandhastheabilitytooperateindependently,mainlytakeschargeofthecoordinatedcontrolofDGsinthemicrogrid.EachcontrollerintheCoordinationcontrollayerhastwocontrolstrategies:PQcontrolandV/fcontrol.TheformerismainlyusedintheDGswithouttheabilityofpowerregulation,whilethelatterismainlyusedintheDGswiththeabilityofpowerregulationanddistributedstorage.Whenthemicrogridoperatesinthegrid-connectingmode,alltheDGscanbescheduledtoPQcontrol,accordingtothemanagementofstableoutputpowersettings.Whenmicrogridisislanding,theDGswithpoweradjustmentabilityanddistributedstorageimmediatelyswitchtotheV/fcontrolmodetomaintainthemicrogridvoltageandfrequencystable,andotherDGsarestillrunningonPQcontroltoexportstableelectricpower.Spacevectorpulsewidthmodulationisintroducedtocontrolthethree-levelinverter,whichnotonlyquicklyandaccuratelycontroltheABSTRACTVoutput,butalsotoexpandcapacitytomeetfuturedemands.AsimplemicrogridhasbeensimulatedandanalyzedbyPSCAD/EMTDCsimulationsoftware,andtheresultsshowedthatthecontrolstrategybothconsideredthecoordinationandenergymanagementwithgoodfeasibilityandpracticability.KEYWORDS:distributedgeneration,microgrid,coordinatedcontrol,energymanagement2009213□;“√”2009213200921311.1(DG-DistributedGeneration)[1-4]IEEEP1547LasseterR.H.[5-9]21.21.2.1Microgrid:LargeScaleIntegrationofMicro-GenerationtoLowVoltageGrids(1998-2002)MoreMicrogrids:AdvancedArchitecturesandControlConceptsforMoreMicrogrids(2002-2006)TheKythnosIslandMicrogridContinuon’sMV/LVfacilityMWResidentialDemonstration(CEC)(CERTS—ConsortiumforElectricReliabilityTechnologySolutions)CERTS[10,11]CERTSµGridDER-CAMGEGE(MEM—MicrogridEnergyManagementframework)CECDUITIEEE21IEEEP1547.43(NEDO)2003AomoriAichiKyoto[12]TokyoGas(NRCan—NaturalResourcesCanada)DERDERNRCanCERTS1.2.2[4,13][14]4074[15-21]Sandia[15][16][17,18][19][20][21]51.2.35GW61.390%[22]19865206400kV51GW[23]1.3.171.3.2[22]1-1[23]1-1Tab.1-1ParametersofdifferentdistributedgenerationsDG2COXNO2SOCOPM-1022~301300~18000.2~1.4Negl0.3~1.80.0335~41980~11000.3~6.0Negl2~9-0.6N/A00000N/A0000090%81.3.3[24]1.41-1Fig.1-1Structurediagramofdistributedgenerationsystem1-191.4.1DC/DC1-2Fig.1-2StructurediagramofDCpowerconversion1.4.2AC-DC-AC1-3(a)801-3(b)254010[25]dcV(a)GensP∗GenPGensP∗(b)1-2Fig.1-2StructurediagramofACpowerconversion1.5(1)(2)11(3)(4)12[13]DG2.1132.1.1,2-1Tab.2-1Characteristicsofdifferentfuelcells80~90100W~20kW50%N/A85~95100W~10MW50%N/A175~200200kW~10MW50%N/A540~65010MW60%85%98010MW60%70%2-1(PAFC)(MCFC)(SOFC)[26][27](1)80%~100%60%~80%50%~60%43%33%14(2)25%~100%(3)[26](4)42.1.230%75%4(1)50kW1/31/4(2)2-2[28]1/kWh152-2Tab.2-2Costcomparisonbetweenhydropower,thermal-powerandmicroturbine(/kW)(/kW)7000-100000.04-0.095400-63000.1953000.56(3)30%75%CONOx910-6(4)(1)(2)1670%CO22.1.34%9.6GkW53TkW⋅h[29]172.1.420056000MW(PhotoVoltage,PV),255075~80%18(1)(2)(MaximumPowerPointTrack,MPPT)2-1(a)PV(b)PV2-1Fig.2-1Structurediagramofphotovoltaicgenerationsystem192.2IGBTPWMPWM2.2.12-2fLdcUfCRjX+11Uδ∠ggUδ∠1abcidgdgPjQ+dcIci2-2Fig.2-2SchematicofdistributedgenerationPWMPWMPWM1322mdcdudcUkUkU==(2-1)mkdcUduk20PIPI2.2.22-2dgP1singdgeqUUPxδ=(2-2)gU1Ueqx1gδδδ=−gU1U1sinsinggdudcdcdceqeqUUUkUUIxxδδ==(2-3)sindugdceqkUIxδ=(2-4)dcI(2-4)abcdq21022coscos()cos()33222sinsin()sin()333111222daqbcuuuuuuθθπθπθθπθπ−+=−−−−+(2-5)1dq2-3+−dgPdgrefPdrefi+−dgQdgrefQqrefi2-3PIFig.2-3SchematicofpowerPIcontrol2.2.31d