第二章自由振动分析2-1(a)由例22WTgk22()WKTg因此max()()DtkT其中k=0、1、2……TD=0.64sec如果很小,TD=T222200()49.9/0.64sec386/seckipskkipsinin50/kkipsin(b)211lnlnnnvvvv222121()11.2ln0.3330.86210.05292()10.33320.053025.3%(a’)21D2T21DTT249.950/1kkipsin(c)2cmWmg2T4cTg21DTT241WcTg2240.05292000.64sec386/sec10.0529kipscin0.539sec/ckipsinT=TD0.538sec/ckipsin0.54sec/ckipsin2-22km404.472(1/sec)(0)(0)()sin(0)costDDDvvtetvt(0)(0)()sin(0)(0)(0))costDDDvvtetvvvt22(0)(0)()(0)cossinDtDDDvvtevtt21D()(0)cos(0)(0)sintDDDtevtvvt2(0)(0)()(0)cossin1tDDvvtevtt0.055922(2)(4.47)cccm(a)c=00D5.6(1)sin4.470.7cos4.471.384.47vtin(1)5.6cos4.474.47(0.7)sin4.471.69/secvtin(1)1.4vin,(1)1.7/secvin(b)c=2.80.0559(2.8)0.15724.4710.1574.41D(1/sec)(0.157)(4.41)5.60.7(0.157)(4.47)(1)sin4.410.7cos4.414.41te(1)0.764tin(0.157)(4.41)20.157(5.6)4.41(0.7)(1)5.6cos4.41sin4.4110.157te(1)1.10/sectin(1)0.76vin,(1)1.1/secvin第三章谐振荷载反应3-1根据公式有21sinsin1Rtwtwt0.8ww2.778sin0.8sin1.25Rtwtwt将t以80°为增量计算)(tR并绘制曲线如下:080°160°240°320°400°480°560°640°720°800°00.5471.71-0.481-3.2140.3574.33-0.19-4.92404.9241.25wwt)(tR3-2解:由题意得:22mkipssin,20kkipsin,(0)(0)0vv,ww203.162sec2kwradm8wt(a)0c1sincos2Rtwtwtwt将8wt代入上式得:()412.566Rt(b)0.5cksin0.50.03952223.162ccccmw1exp1cosexpsin2Rtwtwtwtwt将8wt代入上式得:()7.967Rt(c)2.0cksin2.00.1582223.162ccccmw1exp1cosexpsin2Rtwtwtwtwt将8wt代入上式得:()3.105Rt3-3解:(a):依据共振条件可知:1003860.0810.983sec4000kkgwwradmW由2LTVw得:10.9833662.96022wLVfts(b):122max2221212tgovv1ww0.41.2govin代入公式可得:max1.921tvin(c):2LTVw45min66Vhfts226611.51336VwradsecL11.5131.04810.983ww0.4代入数据得:122max22212=1.85512tgovvin3-4解:按照实际情况,当设计一个隔振系统时,将使其在高于临界频率比2下运行,在这种情况下,隔振体系可能有小的阻尼。对于小阻尼:211TR又因为:max0.0050.03tgovTRv联立求的:272220125.6secwfrad又因为:wwkkgwmW联立得:222125.68004.6703867wWkkipsing3-5解:按照实际情况,当设计一个隔振系统时,将使其在高于临界频率比2下运行,在这种情况下,隔振体系可能有小的阻尼。对于小阻尼:211TR又因为:max50700tgovTRv联立求的:215221275.36secwfrad又因为:wwkkgwmW联立得:22275.3665006.37638615wWkkipsing3-6(a)由图3-17有,maxsfk,则inlbfinlbffks/260015.0390max(b)由方程3-66有22kEDeq,由图3-17有221kES,因为mc2,所以,又因为,故0713.0)29(4264inlbfinlbfEESDeqmceqeq2222mEDeq)/(78.36)15.0(/102622insradlbfinsradinlbfEcDeq(c)由方程3-78有2,3-7(a)公式同题3.6(b)(b)公式同题3.6(c)(c)通过题3.6与题3.7的比较可知,与无关,故滞变阻尼机理更合理。3-8(原版英文书中为求DE的值)由方程3-66有22kEeqD,当k与不变时,若)(eqeq,则)(DDEE,由题3.7可知%2.141426.00713.0220713.0)29(4264inlbfinlbfEESDeq)/(39.18)15.0(/202622insradlbfinsradinlbfEcDeq%2.141426.00713.022)(DDEE第五章对冲击荷载的反应5-1解:(a)1000386=25.36rad/sec600kkgmW120.15T=0.248sec0.6050.50.248tT*21/t120.94rad/sec0.15t20.94===0.82625.36*2=0.136sec20.94125.36/20.94t(b)**0max2215001(sinsin)sin(20.940.136)0.8489in110001(0.826)pvttk,maxmax10000.8489848.91Sfkvb又10max0.6050.85tpvDinTk5-2解:设无阻尼(a)011()(/)0(1)mvkvptpttttcossincpvAtBtvEtF带入(1)得:0011()0tpkEtFpFEtkt01pptvkt01=cossincpptvvvAtBtkt0011(0)0-ppvBBktkt0111v()(sint)pttktt1tt当2011111121()sinsin()1sincos()2ptvttttttktt(b)1:tt当02001112()1cossin2pptvttktktsin00,1,222ttnnmaxmax10121322sin()/3333vRtpktmax23R5-3解:(a)110242Tttt0cos(1)mvkvptcossincossincpvAtBtvEttFtt带入(1)得:00022ppEFmk0cossinsin2cppvvvAtBtttk0(0)0(0)sin(0)(0)cos(0)020vApvBkB0sin2pvttk0011()sin2224ppttvtkk001()sinsin22222ppvtkk01v()sincos224ptttk(b)max1max00sin/2vtttRtpk1max11sincos=024ttRttttt5-4解:(a)110.15tT,查表得:D=0.50,maxmax00.3954015.8SkpfvkDpDkk(b)10max010101112()()0.150.3532222tpvptdtptptTmkkT,maxmax0.353207.06Sfvkk5-5解:1max0011()()ttvptdtptdtmkm1012340()(424)53ttptdtpppppmax5=0.395404vS,maxmax=0.3954015.8kfvkmax,max15015.82370SMdfkft第六章6-1Solution:2Km(a)简单求和tNP(N)Sin(ωtN)Cos(ωtN)Y(N-1)AN/FY(N-1)BN/F(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)0000.001.000.000.000.000.000.000.000.000.000.0010.1500.590.8140.4540.4529.4029.4023.7823.780.000.000.0020.286.60.950.3126.7667.2182.36111.7663.9234.5329.381.8718.4630.31000.95-0.31-30.9036.3195.10206.8634.53-63.9298.456.2761.8640.486.60.59-0.81-70.06-33.7550.92257.78-19.85-208.54188.7012.01118.5650.5500.00-1.00-50.00-83.750.00257.780.00-257.78257.7816.41161.9660.60-0.59-0.810.00-83.750.00257.7849.25-208.54257.7916.41161.970.10.06366/0.2521Finlbm0.1sec2/klbin(5)(2)(4)(11)(9)(10)(7)(2