如何训练培养初中生的数学思维方式数学教学中研究的创造思维一般是指对思维主体来说是新颖独到的思维活动,它包括发现事物、提出新见解、提示新规律、创造新方法、建立新理论、解决新问题等思维过程。从思维过程的状态来看,创造性思维在总体上是表现为:……→收敛思维→发散思维→收敛思维→……。发散以便于联想,寻找各种“旧”知识组块之间的可能的“新”组合,发现推理的起点。收敛以便于集中思考,验证由发散思维得到的方案的可行性,对其补充、修正或提出新的方案。创造性思维一般具有独创性(求异性)、多向性、批判性等特征。如数学王子高斯在少年时就发现1+2+2+……+100这道题的特点,并创造出超乎寻常的快速计算方法,思维独特新颖,可以说是创造性思维的典范。在初中阶段,结合数学教学,正确培养和发展学生的创造思维能力,对造就创造型人才至关重要。本文就自己数学教学的实践,谈谈培养学生创造性思维的一些做法。一、优化教学过程,坚持启发式教学培养创造性思维的核心是启发学生积极思维,引导他们主动获取知识,培养分析问题和解决问题的能力。对于数学中的问题或习题,主要着力让学生明白如何去想,从哪方面去想,从哪方面入手,怎样解决问题。例如在课本中的一个问题(用哪种灯省钱)小明想在两种灯中选购一种,其中一种是11瓦(即0.011千瓦)的节能灯,售价60元;另一种是60瓦即(0.06千瓦)的白炽灯,售价3元。两种灯的照明效果一样,使用寿命也相同(3000小时以上)。节能灯售价高,但是较省电;白炽灯售价低,但是用电多。如果电费是0.5元/(千瓦时),选哪种灯可以节省费用(灯的售价加电费)?在引导学生探讨时可设计这样几个问题。问题1:灯的费用由哪几部分组成?如何计算?问题2:两种灯的费用分别是多少?问题3:两种灯用多少时间的费用相等呢?问题4:猜一猜:照明时间是多少小时使用白炽灯省钱?照明时间是多少小时使用节能灯省钱?问题5:如何说明你的猜想是正确的呢?问题6:(引申)如果照明时间为3500小时,则需要购两个灯,试设计你认为能省钱的选灯方案?(假设两个灯的使用寿命为3000小时。)这样通过提问、讨论,学生的合作交流,他们不仅会解决这道题,而且类似的探究性的问题都会解了,起到了举一反三、事半功倍的作用。二、注重培养学生集中型和发散性思维集中型思维是指综合多种已有的信息,朝着同一个方向导出正确答案的思维过程。一般是在思维者具有解决问题的现存信息,但不知结论的情况下进行的,思维者只把提供的信息重新加以组织,朝着一个方向思考,就能得出一个正确的答案。举个很简单的例子如:由ab,bc,cd就可推得ad,这种思维过程就是集中型思维。数学教学中可通过训练学生的演绎推理能力来培养学生的集中型思维能力。发散型思维是指朝着多个不同的方向,去探索多种可能性答案的思维过程。发散性思维一般是在问题存在着多种可能性,但不能肯定哪一种是正确的情况下进行的。例如,某道几何证明题的结论是要求证某两条直线平行,这就要求学生考虑有关两直线平行的各种判定方法。如同位角相等、内错角相等、同旁内角互补、对应线段成比例、平行于同一条直线或垂直于同一条直线等等。上述条件具备其一都可判定两条直线平行。在解决问题的思维过程中,既需要集中型思维,又需要发散性思维。研究资料表明,一个创造性思维活动的全过程是从发散性到集中型思维,再从集中型思维到发散性思维,这样多次循环,才能够完成。只有集中型思维和分散性思维有机地结合,两者协调地活动,才能发现新关系及新联系,解决新问题。需要注意的是,在创造性思维形成和发展的过程中,加强训练学生的发散性思维能力是培养创造性思维的关键。而如何培养学生的发散性思维能力,我在教学中做了一下探索。(1)训练学生由同一题设,联想到多种结论的发散思维习惯。(2)训练学生根据同一结论联想到多种题设的发散性习惯。三、打破常规,充分利用逆向思维师们在教学中,常常引导学生通过归纳、总结得出解决某一问题的“通法”,这种做法固然是必要的,而且也是有效的,但我们认为过分强调“通法”让学生对号入座,这样或许会收到“有心栽花花不开”的苦果,导致学生思维呆板,一旦“通法”在某个题目中“失效”时,便束手无策。因而,教师在引导学生进行归纳总结时,别忘了鼓励学生大胆探索,敢于创新,寻求解决问题的新路子。有些问题正向思维比较繁,如果改为逆向思维,则能化繁为简。人贵创造,培养学生创造性思维能力是数学教学的一项重要任务,数学教学的发展趋势已越来越重视创造性思维能力的培养。需要指出的是,创造性思维不是一种孤立的心理活动,它是灵活性、深刻性、批判性、组织性、发散性等思维品质的相互渗透,相互影响,高度协调,合理构成的产物,这就要求我们在优化这些思维品质的同时,必须特别注意创造性思维的训练和培养,不断提高思维的质量。