1材料分析部分习题1.什么叫“相干散射”、“非相干散射”、“荧光辐射”、“吸收限”、“俄歇效应”?答:⑴当χ射线通过物质时,物质原子的电子在电磁场的作用下将产生受迫振动,受迫振动产生交变电磁场,其频率与入射线的频率相同,这种由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件,故称为相干散射。⑵当χ射线经束缚力不大的电子或自由电子散射后,可以得到波长比入射χ射线长的χ射线,且波长随散射方向不同而改变,这种散射现象称为非相干散射。⑶一个具有足够能量的χ射线光子从原子内部打出一个K电子,当外层电子来填充K空位时,将向外辐射K系χ射线,这种由χ射线光子激发原子所发生的辐射过程,称荧光辐射。或二次荧光。⑷指χ射线通过物质时光子的能量大于或等于使物质原子激发的能量,如入射光子的能量必须等于或大于将K电子从无穷远移至K层时所作的功W,称此时的光子波长λ称为K系的吸收限。⑸当原子中K层的一个电子被打出后,它就处于K激发状态,其能量为Ek。如果一个L层电子来填充这个空位,K电离就变成了L电离,其能由Ek变成El,此时将释Ek-El的能量,可能产生荧光χ射线,也可能给予L层的电子,使其脱离原子产生二次电离。即K层的一个空位被L层的两个空位所替代,这种现象称俄歇效应。2.特征X射线与荧光X射线的产生机理有何异同?某物质的K系荧光X射线波长是否等于它的K系特征X射线波长?答:相同点:特征X射线与荧光X射线都是由激发态原子中的高能级电子向低能级跃迁时,多余能量以X射线的形式放出而形成的。不同点:高能电子轰击使原子处于激发态,高能级电子回迁释放的是特征X射线;X射线轰击使原子处于激发态,高能级电子回迁释放的是荧光X射线。某物质的K系特征X射线与其K系荧光X射线具有相同波长。3.连续谱是怎样产生的?其短波限VeVhc201024.1与某物质的吸收限kkkVeVhc21024.1有何不同(V和VK以kv为单位)?答当ⅹ射线管两极间加高压时,大量电子在高压电场的作用下,以极高的速度向阳极轰击,由于阳极的阻碍作用,电子将产生极大的负加速度。根据经典物理学的理论,一个带负电荷的电子作加速运动时,电子周围的电磁场将发生急剧变化,此时必然要产生一个电磁波,或至少一个电磁脉冲。由于极大数量的电子射到阳极上的时间和条件不可能相同,因而得到的电磁波将具有连续的各种波长,形成连续ⅹ射线谱。在极限情况下,极少数的电子在一次碰撞中将全部能量一次性转化为一个光量子,这个光量子便具有最高能量和最短的波长,即短波限。连续谱短波限只与管压有关,当固定管压,增加管电流或改变靶时短波限不变。原子系统中的电子遵从泡利不相容原理不连续地分布在K,L,M,N等不同能级的壳层上,当外来的高速粒子(电子或光子)的动能足够大时,可以将壳层中某个电子击出原子系统之外,从而使原子处于激发态,这时所需的能量即为吸收限。吸收限只与靶的原子序数有关,与管电压无关。14.试述原子散射因数f和结构因数2HKLF的物理意义。结构因数与哪些因素有关系?答:原子散射因数:f=Aa/Ae=一个原子所有电子相干散射波的合成振幅/一个电子相干散射波的振幅,它反映的是一个原子中所有电子散射波的合成振幅。2结构因数:式中结构振幅FHKL=Ab/Ae=一个晶胞的相干散射振幅/一个电子的相干散射振幅结构因数表征了单胞的衍射强度,反映了单胞中原子种类,原子数目,位置对(HKL)晶面方向上衍射强度的影响。结构因数只与原子的种类以及在单胞中的位置有关,而不受单胞的形状和大小的影响。15.当体心立方点阵的体心原子和顶点原子种类不相同时,关于H+K+L=偶数时,衍射存在,H+K+L=奇数时,衍射相消的结论是否仍成立?答:假设A原子为顶点原子,B原子占据体心,其坐标为:A:000(晶胞角顶)B:1/21/21/2(晶胞体心)于是结构因子为:FHKL=fAei2π(0K+0H+0L)+fBei2π(H/2+K/2+L/2)=fA+fBeiπ(H+K+L)因为:enπi=e-nπi=(-1)n所以,当H+K+L=偶数时:FHKL=fA+fBFHKL2=(fA+fB)2当H+K+L=奇数时:FHKL=fA-fBFHKL2=(fA-fB)2从此可见,当体心立方点阵的体心原子和顶点原主种类不同时,关于H+K+L=偶数时,衍射存在的结论仍成立,且强度变强。而当H+K+L=奇数时,衍射相消的结论不一定成立,只有当fA=fB时,FHKL=0才发生消光,若fA≠fB,仍有衍射存在,只是强度变弱了。16.今有一张用CuKa辐射(λ=0.154nm)摄得的钨(体心立方)的粉末图样,试计算出头四根线条的相对积分强度(不计e-2M和A())。若以最强的一根强度归一化为100,其他线强度各为多少?这些线条的值如下,按下表计算。线条/(*)HKLP1sinnmfF2Φ(θ)PF2Φ强度归一化123420.329.236.443.6解:线条θ/(*)HKLPSinθ/λnm-1fF2ФPF2Ф强度归一化120.3(110)122.250158.513689.013.96622294199.7410021212)](2sin[)](2cos[jjnjjjjjNjjjHKLHKLHKLLzKyHxfLzKyHxfFFF3229.2(200)63.164151.710691.66.1348393544.9717336.4(211)243.848847.18873.63.8366817066.8936443.6(220)124.472743.57569.02.9105264354.891217.CuKα辐射(λ=0.154nm)照射Ag(f.c.c)样品,测得第一衍射峰位置2θ=38°,试求Ag的点阵常数。答:由sin2=λ(h2+k2+l2)/4a2查表由Ag面心立方得第一衍射峰(h2+k2+l2)=3,所以代入数据2θ=38°,解得点阵常数a=0.671nm18.试从入射光束、样品形状、成相原理(厄瓦尔德图解)、衍射线记录、衍射花样、样品吸收与衍射强度(公式)、衍射装备及应用等方面比较衍射仪法与德拜法的异同点。试用厄瓦尔德图解来说明德拜衍射花样的形成。答.入射光束样品形状成相原理衍射线记录衍射花样样品吸收衍射强度衍射装备应用德拜法单色圆柱状布拉格方程辐射探测器衍射环同时吸收所有衍射德拜相机试样少时进行分析.过重时也可用MeAFPI222cossin2cos1相4衍射仪法单色平板状布拉格方程底片感光衍射峰逐一接收衍射测角仪强度测量.花样标定.物相分析19.同一粉末相上背射区线条与透射区线条比较起来其θ较高还是较低?相应的d较大还是较小?既然多晶粉末的晶体取向是混乱的,为何有此必然的规律答:其θ较高,相应的d较小,虽然多晶体的粉末取向是混乱的,但是衍射倒易球与反射球的交线,倒易球半径由小到大,θ也由小到大,d是倒易球半径的倒数,所以θ较高,相应的d较小。20.下图为某样品稳拜相(示意图),摄照时未经滤波。巳知1、2为同一晶面衍射线,3、4为另一晶面衍射线.试对此现象作出解释.答:未经滤波,即未加滤波片,因此K系特征谱线的kα、kβ两条谱线会在晶体中同时发生衍射产生两套衍射花样,所以会在透射区和背射区各产生两条衍射花样。21.在α-Fe2O3及Fe3O4.混合物的衍射图样中,两根最强线的强度比IαFe2O3/IFe3O4=1.3,试借助于索引上的参比强度值计算α-Fe2O3的相对含量。答:依题意可知在混合物的衍射图样中,两根最强线的强度比3.14332OFeOFeII这里设所求32OFe的相对含量为32OFeW,43OFe的含量为已知为43OFeW,借助索引可以查到32OFe及43OFe的参比强度为1sK和2sK,由2112ssKKK可得12K的值再由)1(saa以及sawwassaKII可以求出所求。22.物相定性分析的原理是什么?对食盐进行化学分析与物相定性分析,所得信息有何不同?答:物相定性分析的原理:X射线在某种晶体上的衍射必然反映出带有晶体特征的特定的衍射花样(衍射位置θ、衍射强度I),而没有两种结晶物质会给出完全相同的衍射花样,所以我们才能根据衍射花样与晶体结构一一对应的关系,来确定某一物相。MeFPI22221cossin2cos1相5对食盐进行化学分析,只可得出组成物质的元素种类(Na,Cl等)及其含量,却不能说明其存在状态,亦即不能说明其是何种晶体结构,同种元素虽然成分不发生变化,但可以不同晶体状态存在,对化合物更是如此。定性分析的任务就是鉴别待测样由哪些物相所组成。23.物相定量分析的原理是什么?试述用K值法进行物相定量分析的过程。答:根据X射线衍射强度公式,某一物相的相对含量的增加,其衍射线的强度亦随之增加,所以通过衍射线强度的数值可以确定对应物相的相对含量。由于各个物相对X射线的吸收影响不同,X射线衍射强度与该物相的相对含量之间不成线性比例关系,必须加以修正。K值法是内标法的一种,是事先在待测样品中加入纯元素,然后测出定标曲线的斜率即K值。当要进行这类待测材料衍射分析时,已知K值和标准物相质量分数ωs,只要测出a相强度Ia与标准物相的强度Is的比值Ia/Is就可以求出a相的质量分数ωa。24.试借助PDF(ICDD)卡片及索引,对表1、表2中未知物质的衍射资料作出物相鉴定。表1。d/Å(0.1nm)I/I1d/Å(0.1nm)I/I1d/Å(0.1nm)I/I13.66501.46101.06103.171001.42501.01102.24801.31300.96101.91401.23100.85101.83301.12101.60201.0810表2。d/Å(0.1nm)I/I1d/Å(0.1nm)I/I1d/Å(0.1nm)I/I12.40501.26100.93102.09501.25200.85102.031001.20100.81201.75401.06200.80201.47301.0210答:(1)先假设表中三条最强线是同一物质的,则d1=3.17,d2=2.24,d3=3.66,估计晶面间距可能误差范围d1为3.19—3.15,d2为2.26—2.22,d3为3.68—3.64。根据d1值(或d2,d3),在数值索引中检索适当的d组,找出与d1,d2,d3值复合较好的一些卡片。把待测相的三强线的d值和I/I1值相比较,淘汰一些不相符的卡片,得到:物质卡片顺序号/dA1/II待测物质—3.172.243.661008050BaS8—4543.192.263.691008072因此鉴定出待测试样为BaS6(2)同理(1),查表得出待测试样是复相混合物。并d1与d3两晶面检举是属于同一种物质,而d2是属于另一种物质的。于是把d3=1.75当作d2,继续检索。物质卡片顺序号/dA1/II待测物质—2.031.751.251004020Ni4—8502.031.751.251004221现在需要进一步鉴定待测试样衍射花样中其余线条属于哪一相。首先,从表2中剔除Ni的线条(这里假设Ni的线条中另外一些相的线条不相重叠),把剩余线条另列于下表中,并把各衍射线的相对强度归一化处理,乘以因子2使最强线的相对强度为100。d1=2.09,d2=2.40,d3=1.47。按上述程序,检索哈氏数值索引中,发现剩余衍射线条与卡片顺序号为44—1159的NiO衍射数据一致。物质卡片顺序号/dA1/II待测物质—2.092.401.471006040(归一值)NiO44—11592.092.401.481006030因此鉴定出待测试样为Ni和NiO的混合物。25.某立方晶系晶体德拜花样中部分高角度线条数据如表所列。试用“a-cos2θ”的图解外推法求其点阵常数(准确到4位有效数字)。λ=0.154nm。H2+K2+L2Sin2θ380.9114400.9563410.9761420.99