电大高等数学基础考试答案完整版-整理-

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

核准通过,归档资料。未经允许,请勿外传!高等数学基础归类复习一、单项选择题1-1下列各函数对中,(C)中的两个函数相等.A.2)()(xxf,xxg)(B.2)(xxf,xxg)(C.3ln)(xxf,xxgln3)(D.1)(xxf,11)(2xxxg1-⒉设函数)(xf的定义域为),(,则函数)()(xfxf的图形关于(C)对称.A.坐标原点B.x轴C.y轴D.xy设函数)(xf的定义域为),(,则函数)()(xfxf的图形关于(D)对称.A.xyB.x轴C.y轴D.坐标原点.函数2eexxy的图形关于(A)对称.(A)坐标原点(B)x轴(C)y轴(D)xy1-⒊下列函数中为奇函数是(B).A.)1ln(2xyB.xxycosC.2xxaayD.)1ln(xy下列函数中为奇函数是(A).A.xxy3B.xxeeyC.)1ln(xyD.xxysin下列函数中为偶函数的是(D).Axxysin)1(Bxxy2CxxycosD)1ln(2xy2-1下列极限存计算不正确的是(D).A.12lim22xxxB.0)1ln(lim0xxC.0sinlimxxxD.01sinlimxxx2-2当0x时,变量(C)是无穷小量.A.xxsinB.x1C.xx1sinD.2)ln(x当0x时,变量(C)是无穷小量.Ax1BxxsinC1exD2xx.当0x时,变量(D)是无穷小量.Ax1BxxsinCx2D)1ln(x下列变量中,是无穷小量的为(B)A1sin0xxBln10xxC1xexD.2224xxx3-1设)(xf在点x=1处可导,则hfhfh)1()21(lim0(D).A.)1(fB.)1(fC.)1(2fD.)1(2f设)(xf在0x可导,则hxfhxfh)()2(lim000(D).A)(0xfB)(20xfC)(0xfD)(20xf设)(xf在0x可导,则hxfhxfh2)()2(lim000(D).A.)(20xfB.)(0xfC.)(20xfD.)(0xf设xxfe)(,则xfxfx)1()1(lim0(A)AeB.e2C.e21D.e413-2.下列等式不成立的是(D).A.xxdedxeB)(cossinxdxdxC.xddxx21D.)1(lnxdxdx下列等式中正确的是(B).A.xdxxdarctan)11(2B.2)1(xdxxdC.dxdxx2)2ln2(D.xdxxdcot)(tan4-1函数14)(2xxxf的单调增加区间是(D).A.)2,(B.)1,1(C.),2(D.),2(函数542xxy在区间)6,6(内满足(A).A.先单调下降再单调上升B.单调下降C.先单调上升再单调下降D.单调上升.函数62xxy在区间(-5,5)内满足(A)A先单调下降再单调上升B单调下降C先单调上升再单调下降D单调上升.函数622xxy在区间)5,2(内满足(D).A.先单调下降再单调上升B.单调下降C.先单调上升再单调下降D.单调上升5-1若)(xf的一个原函数是x1,则)(xf(D).A.xlnB.21xC.x1D.32x.若)(xF是)(xf的一个原函数,则下列等式成立的是(A)。A)()()(aFxFdxxfxaB)()()(afbfdxxFbaC)()(xFxfD)()()(aFbFdxxfba5-2若xxfcos)(,则xxfd)((B).A.cxsinB.cxcosC.cxsinD.cxcos下列等式成立的是(D).A.)(d)(xfxxfB.)()(dxfxfC.)(d)(dxfxxfD.)(d)(ddxfxxfxxxfxxd)(dd32(B).A.)(3xfB.)(32xfxC.)(31xfD.)(313xfxxxfxd)(dd2(D)A)(2xxfBxxfd)(21C)(21xfDxxxfd)(2⒌-3若cxFxxf)(d)(,则xxfxd)(1(B).A.cxF)(B.cxF)(2C.cxF)2(D.cxFx)(1补充:xefexxd)(ceFx)(,无穷积分收敛的是dxx121函数xxxf1010)(的图形关于y轴对称。二、填空题⒈函数)1ln(39)(2xxxxf的定义域是(3,+∞).函数xxxy4)2ln(的定义域是(2,3)∪(3,4]函数xxxf21)5ln()(的定义域是(-5,2)若函数0,20,1)(2xxxxfx,则)0(f1.2若函数0,0,)1()(1xkxxxxfx,在0x处连续,则ke..函数002sin)(xkxxxxf在0x处连续,则k2函数0,sin0,1xxxxy的间断点是x=0.函数3322xxxy的间断点是x=3。函数xey11的间断点是x=03-⒈曲线1)(xxf在)2,1(处的切线斜率是1/2.曲线2)(xxf在)2,2(处的切线斜率是1/4.曲线1)(xexf在(0,2)处的切线斜率是1..曲线1)(3xxf在)2,1(处的切线斜率是3.3-2曲线xxfsin)(在)1,2π(处的切线方程是y=1.切线斜率是0曲线y=sinx在点(0,0)处的切线方程为y=x切线斜率是14.函数)1ln(2xy的单调减少区间是(-∞,0).函数2e)(xxf的单调增加区间是(0,+∞)..函数1)1(2xy的单调减少区间是(-∞,-1)..函数1)(2xxf的单调增加区间是(0,+∞).函数2xey的单调减少区间是(0,+∞).5-1xxded2dxex2..xxdxddsin22sinx.xxd)(tantanx+C.若cxxxf3sind)(,则)(xf-9sin3x.5-2335d)21(sinxx3.11231dxxx0.edxxdxd1)1ln(0下列积分计算正确的是(B).A0d)(11xeexxB0d)(11xeexxC0d112xxD0d||11xx三、计算题(一)、计算极限(1小题,11分)(1)利用极限的四则运算法则,主要是因式分解,消去零因子。(2)利用连续函数性质:)(0xf有定义,则极限)()(lim00xfxfxx类型1:利用重要极限1sinlim0xxx,kxkxxsinlim0,kxkxxtanlim0计算1-1求xxx5sin6sinlim0.解:565sin6sinlim5sin6sinlim00xxxxxxxx1-2求0tanlim3xxx解:xxx3tanlim031131tanlim310xxx1-3求xxx3tanlim0解:xxx3tanlim0=3313.33tanlim0xxx类型2:因式分解并利用重要极限1)()sin(limaxaxax,1)sin(limaxaxax化简计算。2-1求)1sin(1lim21xxx.解:)1sin(1lim21xxx=2)11(1)1.()1sin()1(lim1xxxx2-221sin1lim1xxx解:211111)1(1.)1()1sin(lim1)1sin(lim121xxxxxxx2-3)3sin(34lim23xxxx解:2)1(lim)3sin()1)(3(lim)3sin(34lim3323xxxxxxxxxx类型3:因式分解并消去零因子,再计算极限3-14586lim224xxxxx解:4586lim224xxxxx=)1)(4()2)(4(lim4xxxxx3212lim4xxx3-22236lim12xxxxx2233332625limlimlim123447xxxxxxxxxxxxx3-3423lim222xxxx解4121lim)2)(2()1)(2(lim423lim22222xxxxxxxxxxxx其他:0sin21limsin11lim2020xxxxxx,221sinlim11sinlim00xxxxx5456lim22xxxxx1lim22xxx,54362lim22xxxxx3232lim22xxx(0807考题)计算xxx4sin8tanlim0.解:xxx4sin8tanlim0=248.4sin8tanlim0xxxxx(0801考题.)计算xxx2sinlim0.解xxx2sinlim021sinlim210xxx(0707考题.))1sin(32lim21xxxx=4)31(1)1sin()3).(1(lim1xxxx(二)求函数的导数和微分(1小题,11分)(1)利用导数的四则运算法则vuvu)(vuvuuv)((2)利用导数基本公式和复合函数求导公式类型1:加减法与乘法混合运算的求导,先加减求导,后乘法求导;括号求导最后计算。1-1xxxye)3(解:y=332233xxxexe1322332xxxexe1322332xxxe1-2xxxylncot2解:xxxxxxxxxxxxyln2csc)(lnln)(csc)ln()(cot222221-3设xxeyxlntan,求y.解:xxexexxexexxeyxxxxx1sectan1)(tantan)()(ln)tan(2类型2:加减法与复合函数混合运算的求导,先加减求导,后复合求导2-1xxylnsin2,求y解:xxxxxy1cos2)(ln)(sin222-22sinecosxyx,求解:2222cos2esine).(cos).(sin)(sin)(cosxxxxeexeyxxxxx2-3xexy55ln,求,解:xxxxexy5455e5ln5).()(ln类型3:乘积与复合函数混合运算的求导,先乘积求导,后复合求导xeyxcos2,求y。解:xexxexexeyxxxxsincos2)(coscos)(2222其他:xxyxcos2,求y。解:2).(cos.)(cos2ln2)cos()2(xxxxxxxyxx2cossin2ln2xxxxx0807.设2sinsinxeyx,求y解:2sin2sincos2cos)(sin)(xxxexeyxx0801.设2xxey,求y解:222222)()(xxxxexeexexy0707.设2sinxeyx,求解:xxexxeyxx2cos)().(sinsin2sin0701.设xxyecosln,求解:xxxxxeexyesine1).(sin)(ln(三)积分计算:(2小题,共22分)凑微分类型1:)1(d12xdxx计算xxxd1cos2解:c

1 / 21
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功