初二上数学二次根式六大应试题型归类

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

【教师寄语:我深深地理解,耗费了多少时间,战胜了多少困难,你才取得眼前的成绩,决心要成功的人,已经成功了一半。请你相信,在你追求、拼搏和苦干的过程中,我将永远面带微笑地站在你的身旁。】初二数学二次根式一、基础知识点1、平方根:⑴定义:如果2xa,则x叫做a的平方根,记作“a”(a称为被开方数)。(2)算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”。2、立方根:⑴定义:如果2xa,则x叫做a的立方根,记作“3a”(a称为被开方数)。3、开平方(开立方):求一个数的平方根(立方根)的运算叫开平方(开立方)。二、规律总结:1、平方根是其本身的数是;算术平方根是其本身的数是;立方根是其本身的数是。2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。3、a本身为非负数,即a≥0;a有意义的条件是0a。4、公式:⑴(a)2(0)aa;⑵3a=3a(a取任何数)。5、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0。6、注意二次根式化简题目中完全平方公式的应用,2222abaabb;2222abaabb,主要应用于开根号,及平方差公式,22ababab,主要应用于分母有理化及复合二次根式化简。二次根式的性质及应用:(1)20aaa;(2)2(0),(0)aaaaaa;(3)积的算术平方根的性质:(0,0)ababab;(4)商的算术平方根的性质:(0,0)aaabbb。其中:1.非负性:aa()0是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.2.()()aaa20.注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:aaa()()203.注意:(1)字母不一定是正数.(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.4.公式与的区别与联系(1)a2表示求一个数的平方的算术根,a的范围是一切实数.(2)()a2表示一个数的算术平方根的平方,a的范围是非负数.(3)a2和()a2的运算结果都是非负的.7、最简二次根式与同类二次根式1、最简二次根式:(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式;分母中不含根号.2、同类二次根式(可合并根式);几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式。aaaaaa200||()()aaaaaa200||()()()()aaa208、二次根式大小比较方法1、根式变形法当0,0ab时,①如果ab,则ab;②如果ab,则ab。2、平方法当0,0ab时,①如果22ab,则ab;②如果22ab,则ab。3、分母有理化法通过分母有理化,利用分子的大小来比较。4、分子有理化法通过分子有理化,利用分母的大小来比较。5、倒数法6、媒介传递法适当选择介于两个数之间的媒介值,利用传递性进行比较。7、作差比较法在对两数比较大小时,经常运用如下性质:①0abab;②0abab8、求商比较法它运用如下性质:当a0,b0时,则:①;②二、经典例题精讲知识点一:二次根式的概念【例1】下列各式1),其中是二次根式的是_________(填序号).举一反三:1、下列各式中,一定是二次根式的是()A、aB、10C、1aD、21a2、在a、2ab、1x、21x、3中是二次根式的个数有______个【例2】若式子13x有意义,则x的取值范围是.举一反三:1、使代数式有意义的x的取值范围是()A、x3B、x≥3C、x4D、x≥3且x≠43、如果代数式mnm1有意义,那么,直角坐标系中点P(m,n)的位置在()1aabb1aabb22211,2)5,3)2,4)4,5)(),6)1,7)2153xaaa43xxA、第一象限B、第二象限C、第三象限D、第四象限【例3】若y=5x+x5+2009,则x+y=解题思路:式子a(a≥0),50,50xx5x,y=2009,则x+y=2014举一反三:1、若11xx2()xy,则x-y的值为()A.-1B.1C.2D.32、若x、y都是实数,且y=4x233x2,求xy的值3、当a取什么值时,代数式211a取值最小,并求出这个最小值。1、已知a是5整数部分,b是5的小数部分,求12ab的值。2、若3的整数部分是a,小数部分是b,则ba3。3、若17的整数部分为x,小数部分为y,求yx12的值.知识点二:二次根式的性质【例4】若22340abc,则cba.举一反三:1、若0)1(32nm,则mn的值为。2、已知yx,为实数,且02312yx,则yx的值为()A.3B.–3C.1D.–13、已知直角三角形两边x、y的长满足|x2-4|+652yy=0,则第三边长为______.4、若1ab与24ab互为相反数,则2005_____________ab。(公式)0()(2aaa的运用)【例5】化简:21(3)aa的结果为()A、4—2aB、0C、2a—4D、4举一反三:化简:3313=已知直角三角形的两直角边分别为2和5,则斜边长为(公式)0a(a)0a(aaa2的应用)【例6】已知2x,则化简244xx的结果是A、2xB、2xC、2xD、2x举一反三:1、根式2(3)的值是()A.-3B.3或-3C.3D.92、已知a0,那么│2a-2a│可化简为()A.-aB.aC.-3aD.3a3、若23a,则2223aa等于()A.52aB.12aC.25aD.21a4、若a-3<0,则化简aaa4962的结果是()(A)-1(B)1(C)2a-7(D)7-2a5、化简2244123xxx得()(A)2(B)44x(C)-2(D)44x6、当a<l且a≠0时,化简aaaa2212=.7、已知0a,化简求值:22114()4()aaaa【例7】如果表示a,b两个实数的点在数轴上的位置如图所示,那么化简│a-b│+2()ab的结果等于()A.-2bB.2bC.-2aD.2a举一反三:实数a在数轴上的位置如图所示:化简:21(2)______aa.【例8】化简21816xxx的结果是2x-5,则x的取值范围是()(A)x为任意实数(B)1≤x≤4(C)x≥1(D)x≤1举一反三:若代数式22(2)(4)aa的值是常数2,则a的取值范围是()A.4a≥B.2a≤C.24a≤≤D.2a或4a【例9】如果11a2aa2,那么a的取值范围是()1012aobaA.a=0B.a=1C.a=0或a=1D.a≤1举一反三:1、如果2693aaa成立,那么实数a的取值范围是()2、若03)3(2xx,则x的取值范围是()(A)3x(B)3x(C)3x(D)3x【例10】化简二次根式的结果是()(A)2a(B)2a(C)2a(D)2a举一反三:1、把二次根式aa1化简,正确的结果是()A.aB.aC.aD.a知识点三:最简二次根式和同类二次根式【例11】在根式1),最简二次根式是()A.1)2)B.3)4)C.1)3)D.1)4)举一反三:1、)ba(17,54,b40,212,30,a45222中的最简二次根式是。2、下列根式中,不是最简二次根式的是()A.7B.3C.12D.23、下列根式不是最简二次根式的是()A.21aB.21xC.24bD.0.1y4、下列各式中哪些是最简二次根式,哪些不是?为什么?(1)ba23(2)23ab(3)22yx(4))(baba(5)5(6)xy85、把下列各式化为最简二次根式:.0.3;.3;.3AaBaCaDa22aaa222;2);3);4)275xabxxyabc(1)12(2)ba245(3)xyx2【例12】下列根式中能与3是合并的是()A.8B.27C.25D.21举一反三:1、下列各组根式中,是可以合并的根式是()A、318和B、133和C、22abab和D、11aa和2、在二次根式:①12;②32;③32;④27中,能与3合并的二次根式是。3、如果最简二次根式83a与a217能够合并为一个二次根式,则a=__________.知识点四:二次根式计算——分母有理化【例13】把下列各式分母有理化(1)148(2)4337(3)11212(4)13550【例14】把下列各式分母有理化(1)328xxy(2)2ab(3)38xx(4)2525abba【例15】把下列各式分母有理化:221(2)5353(3)333223举一反三:1、已知2323x,2323y,求下列各式的值:(1)xyxy(2)223xxyy2、把下列各式分母有理化:(1)ababab(2)2222aaaa(3)2222babbab小结:一般常见的互为有理化因式有如下几类:①与;②与;③与;④与.知识点五:二次根式计算——二次根式的混合计算与求值1、abbaabb3)23(2352、22(212+418-348)3、132xy·(-42yx)÷162xy4、673)32272(5、62332)(62332()6、)54)(54()523(27、1110)562()562(8、)0()122510(9312mmmmmmm【例21】1.已知:,求的值.2.已知,求的值。3.已知:,求的值.4.求的值.5.已知、是实数,且,求的值.知识点六:根式比较大小【例22】比较35与53的大小。(用两种方法解答)【例23】比较231与121的大小。【例24】比较1514与1413的大小。【例25】比较76与65的大小。【例26】比较73与873的大小三、课后训练:一、选择题1.使131xx有意义的x的取值范围是()2.一个自然数的算术平方根为0aa,则与这个自然数相邻的两个自然数的算术平方根为()(A)1,1aa(B)1,1aa(C)221,1aa(D)221,1aa3.若0x,则2xx等于()(A)0(B)2x(C)2x(D)0或2x4.若0,0ab,则3ab化简得()(A)aab(B)aab(C)aab(D)aab5.若1ymy,则21yy的结果为()(A)22m(B)22m(C)2m(D)2m6.已知,ab是实数,且222aabbba,则a与b的大小关系是()(A)ab(B)ab(C)ab(D)ab7.已知下列命题:①22525;②2336;③22333aaa;④22abab.其中正确的有()(A)0个(B)1个(C)2个(D)3个8.若246m与234m化成最简二次根式后的被开方数相同,则m的值为()(A)203(B)5126(C)138(D)1589.当12a时,化简214421aaa等于()(A)2(B)24a(C)a(D)010.化简2244123xxx得()(A)2(B)44x(C)2(D)44x二、填空题11.若21x的平方根是5,则41_____x.12.当_____x时,式

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功