1数列基础知识点和方法归纳一.等差数列的定义与性质定义:1nnaad(d为常数),11naand等差中项:xAy,,成等差数列2Axy前n项和11122nnaannnSnad性质:na是等差数列(1)若mnpq,则mnpqaaaa;(2)数列12212,,nnnaaa仍为等差数列,232nnnnnSSSSS,,……仍为等差数列,公差为dn2;(3)项数为偶数n2的等差数列na,有),)(()()(11122212为中间两项nnnnnnnaaaanaanaanS(4)项数为奇数12n的等差数列na,有)()12(12为中间项nnnaanS练习题:1.已知}{na为等差数列,135246105,99aaaaaa,则20a等于()A.-1B.1C.3D.72.设nS是等差数列na的前n项和,已知23a,611a,则7S等于()A.13B.35C.49D.633.已知na为等差数列,且7a-24a=-1,3a=0,则公差d=A.-2B.-12C.12D.24.在等差数列na中,284aa,则其前9项的和S9等于()A.18B27C36D95.设等差数列{}na的前n项和为nS,若39S,636S,则789aaa()A.63B.45C.36D.276.设等差数列na的前n项和为nS,若535aa则95SS7.设等差数列na的前n项和为nS,若972S,则249aaa=28.等差数列na的前n项和为nS,且53655,SS则4a9、设等差数列}{na的前n项的和为Sn,且S4=-62,S6=-75,求:}{na的通项公式an及前n项的和Sn;10.已知等差数列{na}中,,0,166473aaaa求{na}前n项和ns.二.等比数列的定义与性质定义:1nnaqa(q为常数,0q),11nnaaq.等比中项:xGy、、成等比数列2Gxy,或Gxy.前n项和:11(1)1(1)1nnnaqSaqqq(要注意!)性质:na是等比数列(1)若mnpq,则mnpqaaaa··(2)232nnnnnSSSSS,,……仍为等比数列,公比为nq.注意:由nS求na时应注意什么?1n时,11aS;2n时,1nnnaSS.3练习题1.已知a,b,c,d是公比为2的等比数列,则dcba22等于()A.1B.21C.41D.812.已知}{na是等比数列,且0na,243546225aaaaaa,那么53aa的值是()A.5B.6C.7D.253.在等比数列}{na中,485756aaaa,则10S等于()A.1023B.1024C.511D.5124.等差数列}{na中,1a,2a,4a恰好成等比数列,则41aa的值是()A.1B.2C.3D.45.等比数列}{na中,首项81a,公比21q,那么它的前5项的和5S的值是()A.231B.233C.235D.2376.已知等比数列}{na中,102a,203a,那么它的前5项和5S=__________。7.等比数列}{na的通项公式是nna42,则5S=__________。8.在等比数列}{na中,已知5127aa,则111098aaaa=__________。9.设三个数a,b,c成等差数列,其和为6,又a,b,1c成等比数列,求此三个数。4三.求数列通项公式的常用方法(1)求差(商)法如:数列na,12211125222nnaaan……,求na[练习]数列na满足111543nnnSSaa,,求na(2)叠乘法(累乘法)【形如1nnafna】如:数列na中,1131nnanaan,,求na[练习]数列na满足1111,2nnnaaann,求na5(3)累加法【形如1nnaafn】如:数列na满足1132,2nnaana,求na[练习]数列na中,111132nnnaaan,,求na(4)等比型递推公式【形如1nnacad】如:111,32nnaaa,求na[练习]数列na中,111,69nnaaa,求na(5)倒数法(难,可不掌握)如:11212nnnaaaa,,求na6四.求数列前n项和的常用方法(1)裂项法把数列各项拆成两项或多项之和,使之出现成对互为相反数的项.如:na是公差为d的等差数列,求111nkkkaa解:由11111110kkkkkkdaaaaddaa·∴11111223111111111111nnkkkkkknnaadaadaaaaaa……11111ndaa[练习]求和:111112123123n…………(2)错位相减法若na为等差数列,nb为等比数列,求数列nnab(差比数列)前n项和,可由nnSqS,求nS,其中q为nb的公比.如:2311234nnSxxxnx……[练习]设数列na中,21123333,3nnnaaaanZ,求(1)na的通项公式;(2)设nnnba,求数列nb的通项公式