对勾函数(目前最全面的版本了吧)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

对勾函数f(x)=ax+的图象与性质繁华分享对勾函数是数学中一种常见而又特殊的函数。它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。(一)对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+(接下来写作f(x)=ax+b/x)。当a≠0,b≠0时,f(x)=ax+b/x是正比例函数f(x)=ax与反比例函数f(x)=b/x“叠加”而成的函数。这个观点,对于理解它的性质,绘制它的图象,非常重要。当a,b同号时,f(x)=ax+b/x的图象是由直线y=ax与双曲线y=b/x构成,形状酷似双勾。故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。如下图所示:当a,b异号时,f(x)=ax+b/x的图象发生了质的变化。但是,我们依然可以看作是两个函数“叠加”而成。(请自己在图上完成:他是如何叠加而成的。)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。接下来,为了研究方便,我们规定a0,b0。之后当a0,b0时,根据对称就很容易得出结论了。(二)对勾函数的顶点对勾函数性质的研究离不开均值不等式。a0b0a0b0对勾函数的图像(ab同号)对勾函数的图像(ab异号)利用均值不等式可以得到:当x0时,。当x0时,。即对勾函数的定点坐标:(三)对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。(四)对勾函数的单调性(五)对勾函数的渐进线由图像我们不难得到:(六)对勾函数的奇偶性对勾函数在定义域内是奇函数,yXOy=ax

1 / 2
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功