初中圆复习一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。二、点与圆的位置关系1、点在圆内dr点C在圆内;2、点在圆上dr点B在圆上;3、点在圆外dr点A在圆外;三、直线与圆的位置关系1、直线与圆相离dr无交点;2、直线与圆相切dr有一个交点;3、直线与圆相交dr有两个交点;四、圆与圆的位置关系外离(图1)无交点dRr;外切(图2)有一个交点dRr;相交(图3)有两个交点RrdRr;内切(图4)有一个交点dRr;内含(图5)无交点dRr;rdd=rdr图3rRd图1rRdrddCBAO图2rRd图4rRd图5rRd五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②ABCD③CEDE④弧BC弧BD⑤弧AC弧AD中任意2个条件推出其他3个结论。推论2:圆的两条平行弦所夹的弧相等。即:在⊙O中,∵AB∥CD∴弧AC弧BD六、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:①AOBDOE;②ABDE;③OCOF;④弧BA弧BD七、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。即:∵AOB和ACB是弧AB所对的圆心角和圆周角∴2AOBACB2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙O中,∵C、D都是所对的圆周角∴CD推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。即:在⊙O中,∵AB是直径或∵90C∴90C∴AB是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。即:在△ABC中,∵OCOAOB∴△ABC是直角三角形或90C注意:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。OEDCBAOCDABFEDCBAOCBAODCBAOCBAOCBAO八、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。即:在⊙O中,∵四边ABCD是内接四边形∴180CBAD180BDDAEC九、切线的性质与判定定理1、切线的判定定理:过半径外端且垂直于半径的直线是切线;两个条件:过半径外端且垂直半径,二者缺一不可即:∵MNOA且MN过半径OA外端∴MN是⊙O的切线2、性质定理:切线垂直于过切点的半径(如上图)推论1:过圆心垂直于切线的直线必过切点。推论2:过切点垂直于切线的直线必过圆心。以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。十、切线长定理切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。即:∵PA、PB是的两条切线∴PAPB;PO平分BPA十一、圆幂定理1、相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。即:在⊙O中,∵弦AB、CD相交于点P,∴PAPBPCPD推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。即:在⊙O中,∵直径ABCD,∴2CEAEBE2、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。即:在⊙O中,∵PA是切线,PB是割线∴2PAPCPB3、割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如右图)。即:在⊙O中,∵PB、PE是割线∴PCPBPDPEEDCBANMAOPBAOPODCBAOEDCBADECBPAO十二、两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。如图:12OO垂直平分AB。即:∵⊙1O、⊙2O相交于A、B两点∴12OO垂直平分AB十三、圆的公切线两圆公切线长的计算公式:(1)公切线长:12RtOOC中,22221122ABCOOOCO;(2)外公切线长:2CO是半径之差;内公切线长:2CO是半径之和十四、圆内正多边形的计算(1)正三角形在⊙O中△ABC是正三角形,有关计算在RtBOD中进行:::1:3:2ODBDOB;(2)正四边形同理,四边形的有关计算在RtOAE中进行,::1:1:2OEAEOA:(3)正六边形同理,六边形的有关计算在RtOAB中进行,::1:3:2ABOBOA.十五、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:180nRl;(2)扇形面积公式:213602nRSlRn:圆心角R:扇形多对应的圆的半径l:扇形弧长S:扇形面积2、圆柱:(1)圆柱侧面展开图2SSS侧表底=222rhrBAO1O2CO2O1BADCBAOECBADOBAOSlBAO母线长底面圆周长C1D1DCBA图2EDCBAo(2)圆柱的体积:2Vrh3、圆锥侧面展开图(1)SSS侧表底=2Rrr(2)圆锥的体积:213Vrh十六、内切圆及有关计算。(1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。(2)△ABC中,∠C=90°,AC=b,BC=a,AB=c,则内切圆的半径r=2cba。(3)S△ABC=)(21cbar,其中a,b,c是边长,r是内切圆的半径。(4)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。如图,BC切⊙O于点B,AB为弦,∠ABC叫弦切角,∠ABC=∠D。C练习题1.若⊙O的半径为4cm,点A到圆心O的距离为3cm,那么点A与⊙O的位置关系是()A.点A在圆内B.点A在圆上c.点A在圆外D.不能确定2.已知⊙O的半径为5,弦AB的弦心距为3,则AB的长是3.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,点P是直径MN上一个动点,则求PA+PB的最小值4如图2,已知BD是⊙O的直径,⊙O的弦AC⊥BD于点E,若∠AOD=60°,则∠DBC的度数为5.与直线L相切于已知点的圆的圆心的轨迹是______.6.已知直角三角形的两直角边长分别为5和12,则它的外接圆半径R=______,内切圆半径r=______.7.⊙O的半径为6,⊙O的一条弦AB为63,以3为半径的同心圆与直线AB的位置关系是.8.PA、PB是⊙O的切线,切点是A、B,∠APB=50°,过A作⊙O直径AC,连接CB,则∠PBC=______._N_M_B_A__P_OB1RrCBAOBOAD9.如图4,AB是⊙O的直径,弦AC、BD相交于P,则CD∶AB等于A.sinBPCB.cosBPCC.tanBPCD.cotBPC图4图510.如图5,点P为弦AB上一点,连结OP,过PC作PC⊥OP,PC交⊙O于C,若AP=4,PB=2,则PC的长是A.2B.2C.22D.311.圆的最大的弦长为12cm,如果直线与圆相交,且直线与圆心的距离为d,那么A.d6cmB.6cmd12cmC.d≥6cmD.d12cm12.如图6,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,P为切点,设AB=12,则两圆构成圆环面积为______.图6图713.如图7,PE是⊙O的切线,E为切点,PAB、PCD是割线,AB=35,CD=50,AC∶DB=1∶2,则PA=______.14.如图8,AB是⊙O的直径,点D在AB的延长线上,且BD=OB,点C在⊙O上,∠CAB=30°,求证:DC是⊙O的切线.图815.如图,AB既是⊙C的切线也是⊙D的切线,⊙C与⊙D相外切,⊙C的半径r=2,⊙D的半径R=6,求四边形ABCD的面积。16.如图10,BC是⊙O的直径,A是弦BD延长线上一点,切线DE平分AC于E,求证:(1)AC是⊙O的切线.(2)若AD∶DB=3∶2,AC=15,求⊙O的直径.(12分)图1017.如图11,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC2=PE·PO.(1)求证:PC是⊙O的切线;(2)若OE∶EA=1∶2,PA=6,求⊙O的半径;(3)求sinPCA的值.(12分)图1118.如图,⊙O的两条割线AB、AC分别交圆O于D、B、E、C,弦DF//AC交BC于C.(1)求证:CGBCFGAC;(2)若CF=AE.求证:△ABC为等腰三角形.·ABCDEOFGDCAB19.如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,(1)求证:CB∥PD;(2)若BC=3,sinP=35,求⊙O的直径。20.如图,△ABC内接于⊙O,AB是⊙O的直径,PA是过A点的直线,∠PAC=∠B.(l)求证:PA是⊙O的切线;(2)如果弦CD交AB于E,CD的延长线交PA于F,AC=8,CE:ED=6:5,AE:EB=2:3,求AB的长和∠ECB的正切值.21.如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于点D,E为AB上的一点,DE=DC,以D为圆心,DB长为半径作⊙D,求证:(l)AC是⊙D的切线;(2)AB+EB=AC.22.如图,AB是⊙O的直径,以OA为直径的⊙1O;与⊙O的弦AC相交于D,DE⊥OC,垂足为E.(l)求证:AD=DC;(2)求证:DE是⊙1O的切线;(3)如果OE=EC,请判断四边形1OOED是什么四边形,并证明你的结论.考点一:与圆相关概念的应用.ABCDPOEFABCDE1OOABCDE利用与圆相关的概念来解决一些问题是必考的内容,在复习中准确理解与圆有关的概念,注意分清它们之间的区别和联系.1.运用圆与角(圆心角,圆周角),弦,弦心距,弧之间的关系进行解题【例1】已知:如图所示,在△ABO中,∠AOB=90°,∠B=25°,以O为圆心,OA长为半径的圆交AB于D,求弧AD的度数.【例2】如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为().A.30°B.45°C.50°D.60°2.利用圆的定义判断点与圆,直线与圆、圆与圆的位置关系【例3】已知⊙O的半径为3cm,A为线段OM的中点,当OA满足:(1)当OA=1cm时,点M与⊙O的位置关系是.(2)当OA=1.5cm时,点M与⊙O的位置关系是.(3)当OA=3cm时,点M与⊙O的位置关系是.【例4】⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是().A.相交B.相切C.相离D.无法确定【例5】两圆的半径分别为3cm和4cm,圆心距为2cm,那么两圆的位置关系是______________.3.正多边形和圆的有关计算【例6】已知正六边形的周长为72cm,求正六边形的半径,边心距和面积.4.运用弧长及扇形面积公式进行有关计算【例7】如图,矩形ABCD中,BC=2,DC=4,以AB