琼脂糖凝胶电泳实验技巧核酸分子是两性解离分子,在高于其等电点的电泳缓冲液(pH8.0-8.3)中,基其碱基不解离,而磷酸基团全部解离,核酸分子因而带负电荷,电泳时向正极迁移。琼脂糖主要多海洋植物琼脂中提取而来并经糖基化修饰,为一种聚合链线性分了,使用琼脂糖凝胶作为电泳支持介质,发挥分子筛功能,使得大小和构象不同的核酸分子的迁移率出现较大差异,从而达到分离的目的。琼脂糖凝胶电泳操作简单、快速、通过调整其使用浓度,使得分辨率达到大多实验的要求。因此成为分离、鉴定、纯化核酸分子的常用方法。一、操作过程中要注意以下一些问题。1、凝胶制作1.1凝胶浓度凝胶的浓度据实验需要而变,一般在1.8%-2.0%之间,没有用完的凝胶可以再次融化,但随着融化次数的增加,水分丢失也越多,凝胶浓度则会越来越高,导致实验结果不稳定。补水办法:一是在容器上标记煮胶前的刻度,煮胶后补充水分到原刻度;二是在煮胶前称重,煮胶后补充水至原重量。粗略一点的办法是通过多次较恒定的煮胶条件得出一个经验补水值,以保证凝胶浓度基本维持在原浓度。如果条带要回收最好不要用回收胶。1.2梳板的选用一般每个制胶模具均配有多个齿型不同的梳板。梳齿宽厚,形成的点样孔容积较大,用于DNA片段回收实验等;相反,梳齿窄而薄,形成的点样孔容积就较小,用于PCR产物、酶切产物鉴定等。回收的话还可以将几个齿用透明胶带粘起来,形成一个窄而长的大孔以加大点样量提高回收率。梳板的选择主要是看上样量的多少而定。一般来说,上样量小时尽量选择薄的梳板制胶,此时电泳条带致密清晰,便于结果分析。另外,每次制胶时都要注意梳齿与底板的距离至少要1mm,否则,拔梳板时易损坏凝胶孔底层,导致点样后样品渗漏。当然,点样孔的破坏还与拔梳板的时间和方法有关,一般凝胶需冷却30min以上方可拔出梳板,应急的情况下可以将成型的凝胶块入4度冰箱中冷却15min左右,拔梳板的方法是将制胶槽放置在电泳槽中的电泳缓冲液中,然后垂直向上慢慢用力,因为有液体的润滑作用,梳板易拔出且不易损坏点样孔。2、点样在样品加入上样缓冲液中含有甘油或蔗糖以增加密度,使样品沉入孔底;上样缓冲液中一般还含有两种指示剂,溴酚兰和二甲苯菁,用于指示样吕的迁移过程。上样缓冲液储存液一般为6倍(10倍),表示其浓度为工作浓度的六倍。使用时上样缓冲液应稀释到一倍浓度。点样方法是将移液枪基本垂直对准点样孔,用另一只手帮助固定移液枪下端,移液枪的枪头尖端进入点样孔即可将样品注入孔内。上样量的多少根据跑胶的目的而不同,一般直接跑DNA时量最少,跑一般的分子标记适中,回收时可以都加进去。最后根据扩增条带的大小点上适合的DNAMaker。3、电泳将电泳仪的正极与电泳槽的正极相连,负极与负极相连,每次电泳时都要检查一下电极方向,以免白干(新手来做时可能就有这样的情况发生)。核酸带负电荷,从负极向正极移动。电泳槽中电泳缓冲液与制胶用电泳缓冲液应相同,电泳缓冲液刚好浸过胶为好。电泳缓冲液浓度太大则电流加大,凝胶发热,易使DNA降解。电泳早所加电压一般不超过5v/cm(正负电极之间的距离,而不是凝胶的长度)。电泳时间一般为30-60min,根据实验需要也可作适当调整。电压增高,电泳时间缩短,核酸条带相对来说不够整齐,不够清晰;相反,电压降低,电泳时间较长,条带会相对的清晰。另外,如果电泳后样品泳支很慢或者没移动可能是由于挡板没有拿开。附EB作用原理:观察琼脂糖凝胶中DNA最常用的方法是利用荧光染料溴化乙锭进行染色,溴化乙锭含有一个可以嵌入DNA堆积碱基之间的一个三环平面基团。它与DNA的结合几乎没有碱基序列特异性。在高离子强度的饱和溶液中,大约每2.5个碱基插入一个溴化乙锭分子。当染料分子插入后,其平面基团与螺旋的轴线垂直并通过范德华力与上下碱基相互作用。这个基团的固定位置及其与碱基的密切接近,导致与DNA结合的染料呈现荧光,其荧光产率比游离溶液中染料有所增加。DNA吸收254nm处的紫外辐射并传递给染料,而被结合的染料本身吸收302nm和366nm的光辐射。这两种情况下,被吸收的能量在可见光谱红橙区的590nm处重新发射出来。由于溴化乙锭-DNA复合物的荧光产率比没有结合DNA的染料高出20-30倍,所以当凝胶中含有游离的溴化乙锭(0.5ug/ml)时,可以检测到少至10ng的NDA条带。DNA电泳一般使用的都是琼脂糖凝胶电泳,电泳的驱动力靠DNA骨架本身的负电荷。聚丙烯酰氨(PAGE)凝胶电泳用于蛋白质与寡糖核苷酸的分离。电泳的驱动力靠与蛋白质结合的SDS上所携带的负电荷。蛋白质电泳(一般指SDS-PAGE)根据蛋白分子量亚基的不同而分离蛋白。蛋白质亚基的电泳迁移率主要取决于亚基分子量的大小,电荷因素可以忽视。所以相同点就是样品都是带负电荷的,从负极向正极移动,移动的距离都和样品的分子量有关。而且这两个电泳体系可以互相交换使用。进行大分子蛋白质电泳时,可以考虑换用琼脂糖凝胶,因为该体系孔径大。相反,如果需要精确到各位数碱基的DNA电泳也可以使用聚丙烯酰胺凝胶系统,因为使用该系统可以将相差一个碱基的两条DNA链分开。不同点首先是样品不同。这个就不用多说了。其次是结果的观察方法不同。DNA电泳普遍使用EB做染料,在紫外灯下观察;而蛋白电泳使用的考马斯亮蓝染色,还需要经过脱色步骤,不过观察起来比较简单。还有就是胶体系的差别,DNA电泳通常是一胶跑到底,而蛋白质电泳则会有分离胶和浓缩胶之区别。电泳中样品移动的本质确实是样品所携带的电荷。但是,区分这些条带直接可以用分子量而无需使用电荷数,是因为这些样品的电荷/分子量比都是恒定的了。以DNA分子为例,它在电泳中的移动是靠其骨架中磷酸所携带的负电荷来实现的,而这个磷酸分子又是每一个核苷酸中都有的,所以DNA分子所携带的负电荷数是由其核苷酸总数决定的。而且,DNA分子中核苷酸的组成动辄成百上千,在如此大的分子量面前,讨论单个核苷酸之间分子量的差别就显得毫无意义。这样,DNA分子中负电荷的量就可以用DNA的分子量来代替,反过来,DNA的分子量也就可以用DNA分子所携带的电荷来代替(一句话,DNA分子的电荷/分子量比是恒定的)。这在蛋白电泳中(特别是SDS-PAGE中)是一样的。在SDS-PAGE中,SDS将蛋白质变性成直线分子并紧密包裹于其上,使得其所携带的电荷与蛋白分子量成了一定的比例,剩下的就和核酸电泳一样了。至于为什么核酸的横着跑,蛋白竖着跑,个人认为最大的问题是蛋白制胶的过程导致的。蛋白制胶由于使用了两种不同的凝胶系统,所以需要一个水平的分界面。这个分界面在配胶的过程中是依靠异丙醇在重力作用下的压力下形成的。所以,一并就竖着跑了~~电泳是指混悬于溶液中的样品(有机的或无机的,有生命的或无生命的)电荷颗粒,在电场影响下向着与自身带相反电荷的电极移动的现象