第1页(共26页)2014年江苏省镇江市中考数学试卷一、填空题:本大题共12小题,每小题2分,共计24分.1.(2分)(2016•乐山)计算:|﹣5|=.2.(2分)(2014•镇江)计算:(﹣)×3=.3.(2分)(2014•镇江)化简:(x+1)(x﹣1)+1=.4.(2分)(2014•镇江)分式在实数范围内有意义,则x的取值范围是.5.(2分)(2014•镇江)如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD=.6.(2分)(2014•镇江)如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°.若∠1=25°,∠2=70°,则∠B=.7.(2分)(2014•镇江)一组数据:1,2,1,0,2,a,若它们众数为1,则这组数据的平均数为.8.(2分)(2014•镇江)若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则m=.9.(2分)(2014•镇江)已知圆锥的底面半径为3,母线长为8,则圆锥的侧面积等于.10.(2分)(2014•镇江)如图,将△OAB绕着点O逆时针连续旋转两次得到△OA″B″,每次旋转的角度都是50°.若∠B″OA=120°,则∠AOB=.11.(2分)(2014•镇江)一辆货车从甲地匀速驶往乙地,到达后用了半小时卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地的速度的1.5倍.货车离甲地的距离y(千米)关于时间x(小时)的函数图象如图所示.则a=(小时).第2页(共26页)12.(2分)(2014•镇江)读取表格中的信息,解决问题.n=1a1=+2b1=+2c1=1+2n=2a2=b1+2c1b2=c1+2a1c2=a1+2b1n=3a3=b2+2c2b3=c2+2a2c=a2+2b2…………满足的n可以取得的最小整数是.二、选择题(本大题共有5小题,每小题3分,共计15分,在每小题给出的四个选项中,恰有一项符合题目要求)13.(3分)(2014•镇江)下列运算正确的是()A.(x3)3=x9B.(﹣2x)3=﹣6x3C.2x2﹣x=xD.x6÷x3=x214.(3分)(2014•镇江)一个圆柱如图放置,则它的俯视图是()A.三角形B.半圆C.圆D.矩形15.(3分)(2014•镇江)若实数x、y满足=0,则x+y的值等于()A.1B.C.2D.16.(3分)(2014•镇江)如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于()A.B.C.D.17.(3分)(2014•镇江)已知过点(2,﹣3)的直线y=ax+b(a≠0)不经过第一象限,设s=a+2b,则s的取值范围是()第3页(共26页)A.﹣5≤s≤﹣B.﹣6<s≤﹣C.﹣6≤s≤﹣D.﹣7<s≤﹣三、解答题(本大题共有11小题,共计81分,解答时应写出必要的文字说明、证明过程或演算步骤.)18.(8分)(2014•镇江)(1)计算:()﹣1+cos45°﹣;(2)化简:(x+)÷.19.(10分)(2014•镇江)(1)解方程:﹣=0;(2)解不等式:2+≤x,并将它的解集在数轴上表示出来.20.(6分)(2014•镇江)如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.(1)求证:∠1=∠2;(2)连结BE、DE,判断四边形BCDE的形状,并说明理由.21.(6分)(2014•镇江)为了了解“通话时长”(“通话时长”指每次通话时间)的分布情况,小强收集了他家1000个“通话时长”数据,这些数据均不超过18(分钟).他从中随机抽取了若干个数据作为样本,统计结果如下表,并绘制了不完整的频数分布直方图.“通话时长”(x分钟)0<x≤33<x≤66<x≤99<x≤1212<x≤1515<x≤18次数36a812812根据表、图提供的信息,解答下面的问题:(1)a=,样本容量是;(2)求样本中“通话时长”不超过9分钟的频率:;(3)请估计小强家这1000次通话中“通话时长”超过15分钟的次数.第4页(共26页)22.(6分)(2014•镇江)在一只不透明的布袋中装有红球、黄球各若干个,这些球除颜色外都相同,充分摇匀.(1)若布袋中有3个红球,1个黄球.从布袋中一次摸出2个球,计算“摸出的球恰是一红一黄”的概率(用“画树状图”或“列表”的方法写出计算过程);(2)若布袋中有3个红球,x个黄球.请写出一个x的值,使得事件“从布袋中一次摸出4个球,都是黄球”是不可能的事件;(3)若布袋中有3个红球,4个黄球.我们知道:“从袋中一次摸出4个球,至少有一个黄球”为必然事件.请你仿照这个表述,设计一个必然事件:.23.(6分)(2014•镇江)在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=﹣2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为﹣1.①求点B的坐标及k的值;②直线y=﹣2x+1与直线y=kx+4与y轴所围成的△ABC的面积等于;(2)直线y=kx+4(k≠0)与x轴交于点E(x0,0),若﹣2<x0<﹣1,求k的取值范围.24.(6分)(2014•镇江)如图,小明从点A处出发,沿着坡角为α的斜坡向上走了0.65千米到达点B,sinα=,然后又沿着坡度为i=1:4的斜坡向上走了1千米达到点C.问小明从A点到点C上升的高度CD是多少千米(结果保留根号)?第5页(共26页)25.(6分)(2014•镇江)六•一儿童节,小文到公园游玩.看到公园的一段人行弯道MN(不计宽度),如图,它与两面互相垂直的围墙OP、OQ之间有一块空地MPOQN(MP⊥OP,NQ⊥OQ),他发现弯道MN上任一点到两边围墙的垂线段与围墙所围成的矩形的面积都相等,比如:A、B、C是弯道MN上的三点,矩形ADOG、矩形BEOH、矩形CFOI的面积相等.爱好数学的他建立了平面直角坐标系(如图),图中三块阴影部分的面积分别记为S1、S2、S3,并测得S2=6(单位:平方米).OG=GH=HI.(1)求S1和S3的值;(2)设T(x,y)是弯道MN上的任一点,写出y关于x的函数关系式;(3)公园准备对区域MPOQN内部进行绿化改造,在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),已知MP=2米,NQ=3米.问一共能种植多少棵花木?26.(8分)(2014•镇江)如图,⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:EA是⊙O的切线;(2)已知点B是EF的中点,求证:以A、B、C为顶点的三角形与△AEF相似;(3)已知AF=4,CF=2.在(2)条件下,求AE的长.27.(9分)(2014•镇江)如图1,在平面直角坐标系xOy中,点M为抛物线y=﹣x2+2nx﹣n2+2n的顶点,过点(0,4)作x轴的平行线,交抛物线于点P、Q(点P在Q的左侧),PQ=4.(1)求抛物线的函数关系式,并写出点P的坐标;(2)小丽发现:将抛物线y=﹣x2+2nx﹣n2+2n绕着点P旋转180°,所得新抛物线的顶点恰为坐标原点O,你认为正确吗?请说明理由;(3)如图2,已知点A(1,0),以PA为边作矩形PABC(点P、A、B、C按顺时针的方向排列),=.①写出C点的坐标:C(,)(坐标用含有t的代数式表示);②若点C在题(2)中旋转后的新抛物线上,求t的值.第6页(共26页)28.(10分)(2014•镇江)我们知道平行四边形那有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论【发现与证明】在▱ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连接B′D.结论1:B′D∥AC;结论2:△AB′C与▱ABCD重叠部分的图形是等腰三角形.…请利用图1证明结论1或结论2.【应用与探究】在▱ABCD中,∠B=30°,将△ABC沿AC翻折至△AB′C,连接B′D.(1)如图1,若AB=,∠AB′D=75°,则∠ACB=,BC=;(2)如图2,AB=2,BC=1,AB′与CD相交于点E,求△AEC的面积;(3)已知AB=2,当BC的长为多少时,△AB′D是直角三角形?第7页(共26页)2014年江苏省镇江市中考数学试卷参考答案与试题解析一、填空题:本大题共12小题,每小题2分,共计24分.1.(2分)(2016•乐山)计算:|﹣5|=5.【解答】解:|﹣5|=5.故答案为:52.(2分)(2014•镇江)计算:(﹣)×3=﹣1.【解答】解:(﹣)×3,=﹣×3,=﹣1.故答案为:﹣1.3.(2分)(2014•镇江)化简:(x+1)(x﹣1)+1=x2.【解答】解:(x+1)(x﹣1)+1=x2﹣1+1=x2.故答案为:x2.4.(2分)(2014•镇江)分式在实数范围内有意义,则x的取值范围是x≠1.【解答】解:由题意得x﹣1≠0,解得x≠1.故答案为:x≠1.5.(2分)(2014•镇江)如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD=2.【解答】解:∵点E、F分别是AC、DC的中点,∴EF是△ADC的中位线,∴EF=AD,∵EF=1,第8页(共26页)∴AD=2,∵CD是△ABC的中线,∴BD=AD=2,故答案为:2.6.(2分)(2014•镇江)如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°.若∠1=25°,∠2=70°,则∠B=45°.【解答】解:∵m∥n,∴∠3=∠2=70°,∴∠BAC=∠3﹣∠1=70°﹣25°=45°,∵∠C=90°,∴∠B=90°﹣∠BAC=90°﹣45°=45°.故答案为:45°.7.(2分)(2014•镇江)一组数据:1,2,1,0,2,a,若它们众数为1,则这组数据的平均数为.【解答】解:∵众数为1,∴a=1,∴平均数为:=.故答案为:.8.(2分)(2014•镇江)若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则m=.【解答】解:根据题意得△=12﹣4m=0,解得m=.故答案为.第9页(共26页)9.(2分)(2014•镇江)已知圆锥的底面半径为3,母线长为8,则圆锥的侧面积等于24π.【解答】解:圆锥的侧面积=2π×3×8÷2=24π,故答案为:24π.10.(2分)(2014•镇江)如图,将△OAB绕着点O逆时针连续旋转两次得到△OA″B″,每次旋转的角度都是50°.若∠B″OA=120°,则∠AOB=20°.【解答】解:∵∠AOA′=∠A″OA′=50°,∴∠B″OB=100°,∵∠B″OA=120°,∴∠AOB=∠B″OA﹣∠B″OB=120°﹣100°=20°,故答案为20°.11.(2分)(2014•镇江)一辆货车从甲地匀速驶往乙地,到达后用了半小时卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地的速度的1.5倍.货车离甲地的距离y(千米)关于时间x(小时)的函数图象如图所示.则a=5(小时).【解答】解:由题意可知:从甲地匀速驶往乙地,到达所用时间为3.2﹣0.5=2.7小时,返回的速度是它从甲地驶往乙地的速度的1.5倍,返回用的时间为2.7÷1.5=1.8小时,所以a=3.2+1.8=5小时.故答案为:5.12.(2分)(2014•镇江)读取表格中的信息,解决问题.n=1a1=+2b1=+2c1=1+2n=2a2=b1+2c1b2=c1+2a1c2=a1+2b1n=3a3=b2+2c2b3=c2+2a2c=a2+2b2…………满足的n可以取得的最小整数是7.第10页(共26页)【解答】解:由a1+b1+c1=+2++2+1+2=3(++1),a2+b2+c2=9(++1),…an+bn+cn=3n(++1),∵∴an+bn+cn≥2014×(﹣+1)(+)=2014(++1),∴3n≥2014,则36<2014<37,∴n最小整数是7.故答案为:7二、选择题(本大题共有5小题,每小题3分,共计15分,在每小题给出的四个选项中,恰有一项符合题目要求)13.(3分)(2014•镇江)下列运算正