(2012年1月最新最细)2011全国中考真题解析120考点汇编☆方案设计题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

本资料来自于资源最齐全的21世纪教育网世纪教育网--中国最大型、最专业的中小学教育资源门户网站。版权所有@21世纪教育网(2012年1月最新最细)2011全国中考真题解析120考点汇编☆方案设计题二、填空题1.(2011黑龙江鸡西,18,3分)某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有种购买方案.考点:二元一次方程的应用。分析:设甲中运动服买了x套,乙种买了y套,根据,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下可列出方程,且根据x,y必需为整数可求出解.解答:解:设甲中运动服买了x套,乙种买了y套,20x+35y=365x=7374y错误!未找到引用源。当y=3时,x=13当y=7时,x=6.所以有两种方案.故答案为2.点评:本题考查理解题意的能力,关键是根据题意列出二元一次方程然后根据解为整数确定值从而得出结果.三、解答题1.(2011山东日照,22,9分)某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:空调机电冰箱甲连锁店200170乙连锁店160150设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元).(1)求y关于x的函数关系式,并求出x的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?考点:一次函数的应用。专题:优选方案问题。分析:(1)首先设调配给甲连锁店电冰箱(70﹣x)台,调配给乙连锁店空调机(40﹣x)台,电冰箱(x﹣10)台,列出不等式方程组求解即可;(2)由(1)可得几种不同的分配方案;依题意得出y与a的关系式,解出不等式方程后可得出使利润达到最大的分配方案.解答:解:(1)根据题意知,调配给甲连锁店电冰箱(70﹣x)台,调配给乙连锁店空调机(40﹣x)台,电冰箱(x﹣10)台,(1分)则y=200x+170(70﹣x)+160(40﹣x)+150(x﹣10),即y=20x+16800.(2分)∵错误!未找到引用源。0100400700xxxx本资料来自于资源最齐全的21世纪教育网世纪教育网--中国最大型、最专业的中小学教育资源门户网站。版权所有@21世纪教育网∴10≤x≤40.(3分)∴y=20x+168009(10≤x≤40);(4分)(2)按题意知:y=(200﹣a)x+170(70﹣x)+160(40﹣x)+150(x﹣10),即y=(20﹣a)x+16800.(5分)∵200﹣a>170,∴a<30.(6分)当0<a<20时,x=40,即调配给甲连锁店空调机40台,电冰箱30台,乙连锁店空调0台,电冰箱30台;当a=20时,x的取值在10≤x≤40内的所有方案利润相同;当20<a<30时,x=10,即调配给甲连锁店空调机10台,电冰箱60台,乙连锁店空调30台,电冰箱0台;(9分)点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题意,(1)根据40台空调机,60台电冰箱都能卖完,列出不等式关系式即可求解;(2)由(1)关系式,结合让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,列不等式解答,根据a的不同取值范围,代入利润关系式解答.2.(2011陕西,20,8分)一天,某校数学课外活动小组的同学们,带着皮尺去测量某河道因挖沙形成的“圆锥形坑”的深度,来评估这些深坑对河道的影响.如图是同学们选择(确保测量过程中无安全隐患)的测量对象,测量方案如下:①先测量出沙坑坑沿圆周的周长约为34.54米;②甲同学直立于沙坑坑沿圆周所在平面上,经过适当调整自己所处的位置,当他位于点B时,恰好他的视线经过沙坑坑沿圆周上的一点A看到坑底S(甲同学的视线起点C与点A、点S三点共线).经测量:AB=1.2米,BC=1.6米.根据以上测量数据,求“圆锥形坑”的深度(圆锥的高).(π取3.14,结果精确到0.1米)考点:相似三角形的应用;圆锥的计算。专题:几何图形问题。分析:取圆锥底面圆心O,连接OS、OA,OS∥BC可得出△SOA∽△CBA,再由相似三角形的对应边成比例即可解答.解答:解:取圆锥底面圆心O,连接OS、OA,则∠O=∠ABC=90°,OS∥BC,∴∠ACB=∠ASO,∴△SOA∽△CBA,∴错误!未找到引用源。=错误!未找到引用源。,∴OS=错误!未找到引用源。,∵OA=错误!未找到引用源。≈5.5,BC=1.6,A1.2,∴OS=错误!未找到引用源。≈7.3,∴“圆锥形坑”的深度约为7.3米.本资料来自于资源最齐全的21世纪教育网世纪教育网--中国最大型、最专业的中小学教育资源门户网站。版权所有@21世纪教育网故答案为:7.3米.点评:本题考查的是相似三角形在实际生活中的运用,根据题意作出辅助线,构造出相似三角形是解答此题的关键.3.(2011陕西,21,8分)2011年4月28日,以“天人长安,创意自然-------城市与自然和谐共生”为主题的世界园艺博览会在西安隆重开园.这次世园会的门票分为个人票、团体票两大类,其中个人票设置有三种:夜票(A)平日普通票(B)指定日普通票(C)60100150某社区居委会为奖励“和谐家庭”,欲购买个人票100张,其中B种票张数是A种票张数的3倍还多8张.设需购A种票张数为x,C种票张数为y.(1)写出y与x之间的函数关系式;(2)设购票总费用为w元,求出w(元)与x(张)之间的函数关系式;(3)若每种票至少购买1张,其中购买A种票不少于20张,则共有几种购票方案?并求出购票总费用最少时,购买A、B、C三种票的张数.考点:一次函数的应用;一元一次不等式组的应用。专题:优选方案问题。分析:(1)根据A、B、C三种票的数量关系列出y与x的函数关系式;(2)根据三种票的张数、价格分别算出每种票的费用,再算出总数w,即可求出W(元)与X(张)之间的函数关系式;(3)根据题意求出x的取值范围,根据取值可以确定有三种方案购票,再从函数关系式分析w随x的增大而减小从而求出最值,即购票的费用最少.解答:解(1)B中票数为:3x+8则y=100﹣x﹣3x﹣8化简得,y=﹣4x+92即y与x之间的函数关系式为:y=﹣4x+92(2)w=60x+100(3x+8)+150(﹣4x+92)化简得,w=﹣240x+14600即购票总费用W与X(张)之间的函数关系式为:w=﹣240x+14600(3)由题意得,049220xx错误!未找到引用源。解得,20≤x<23∵x是正整数,∴x可取20、21、22那么共有3种购票方案.从函数关系式w=﹣240x+14600可以看出w随x的增大而减小,当x=22时,w的最值最小,即当A票购买22张时,购票的总费用最少.购票总费用最少时,购买A、B、C三种票的张数分别为22、74、4.本资料来自于资源最齐全的21世纪教育网世纪教育网--中国最大型、最专业的中小学教育资源门户网站。版权所有@21世纪教育网点评:本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.4.(2011四川广安,27,9分)广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?考点:一元二次方程的应用,增长(降低)率问题,方案选择问题.专题:一元二次方程、最优化方案问题.分析:(1)设平价每次下调的百分率为x,则第一次下调后的价格为60001x元,第二次下调是在60001x元的基础上进行的,下调后的价格为600011xx元,即260001x,由此可列出一元二次方程求解.(2)根据题意分别计算两种优惠方案可以优惠的钱数,通过比较大小即可作出判断.解答:(1)设平均每次下调的百分率x,则6000(1-x)2=4860.解得:x1=0.1,x2=1.9(舍去).∴平均每次下调的百分率10%.(2)方案①可优惠:4860×100×(1-0.98)=9720元方案②可优惠:100×80=8000元.∴方案①更优惠.点评:对于平均增长(降低)率问题,应用公式1naxb可直接列方程,a为增长率(降低)前的基础数量,x为增长率(降低率),n为增长(降低)的次数,b为增长(降低)后的数量.要注意根据具体问题的实际意义检验结果的合理性.5.(2011四川广安,28,10分)某园艺公司对一块直角三角形的花圃进行改造.测得两直角边长为6m、8m.现要将其扩建成等腰三角形,且扩充部分是以8m为直角边的直角.......三角形....求扩建后的等腰三角形花圃的周长.考点:等腰三角形、直角三角形、勾设定理、分类思想、、设计类问题专题:分类思想、勾股定理、设计类问题分析:原题并没有给出图形,要根据题意画出符合题意的图形,画出图形后,可知本题实际上应三类情况讨论:一是将△ABC沿直线AC翻折180°后,得等腰三角形ABD,如图1;二是延长BC至点D,使CD=4,则BD=AB=10,得等腰三角形ABD,如图2;三是作斜边AB的中垂线交BC的延长线于点D,则DA=DB,得等腰三角形ABD,如图3.先作出符合条件的图形后,再根据勾股定理进行求解即可.解答:分三类情况讨论如下:(1)如图1所示,原来的花圃为Rt△ABC,其中BC=6m,AC=8m,∠ACB=90°.由勾股定理易知AB=10m,将△ABC沿直线AC翻折180°后,得等腰三角形ABD,此时,AD=10m,CD=6m.故扩建后的等腰三角形花圃的周长为12+10+10=32(m).(2)如图2,因为BC=6m,CD=4m,所以BD=AB=10m,在Rt△ACD中,由勾股定理得AD=2284=45,此时,扩建后的等腰三角形花圃的周长为45+10+10本资料来自于资源最齐全的21世纪教育网世纪教育网--中国最大型、最专业的中小学教育资源门户网站。版权所有@21世纪教育网=20+45(m).(3)如图3,设△ABD中DA=DB,再设CD=xm,则DA=(x+6)m,在Rt△ACD中,由勾股定理得x2+82=(x+6)2,解得x=37∴扩建后等腰三角形花圃的周长=10+2(x+6)=380(m).图1668DCBA图2486BCAD图3x+6x68BCDA点评:对于无附图几何问题,往往需要根据题意画出图形,结合已知条件及图形分析求解,这样便于寻找解题思路.6.(2011四川凉山,24,9分)我州鼓苦荞茶、青花椒、野生蘑菇,为了让这些珍宝走出大山,走向世界,州政府决定组织21辆汽车装运这三种土特产共120吨,参加全国农产品博览会.现有A型、B型、C型三种汽车可供选择.已知每种型号汽车可同时装运2种土特产,且每辆车必须装满.根据下表信息,解答问题.苦荞茶青花椒野生蘑菇每辆汽车运载量(吨)A型22B型42C型16(1)设A型汽车安排x辆,B型汽车安排y辆,求y与x之间的函数关系式.(2)如果三种型号的汽车都不少于4辆,车辆安排有几种方案?并写出每种方案.(3)为节约运费,应采用(2)中哪种方案?并求出最少运费.考

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功