911《二次函数的应用》课件1(28张PPT)(沪科版九年级上)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

二次函数的应用专题一:待定系数法确定二次函数无坚不摧:一般式已知二次函数的图象经过A(-1,6),B(1,2),C(2,3)三点,求这个二次函数的解析式;求出A、B、C关于x轴对称的点的坐标并求出经过这三点的二次函数解析式;求出A、B、C关于y轴对称的点的坐标并求出经过这三点的二次函数解析式;在同一坐标系内画出这三个二次函数图象;分析这三条抛物线的对称关系,并观察它们的表达式的区别与联系,你发现了什么?思维小憩:用待定系数法求二次函数的解析式,设出一般式y=ax2+bx+c是绝对通用的办法。因为有三个待定系数,所以要求有三个已知点坐标。一般地,函数y=f(x)的图象关于x轴对称的图象的解析式是y=-f(x)一般地,函数y=f(x)的图象关于y轴对称的图象的解析式是y=f(-x)显而易见:顶点式已知函数y=ax2+bx+c的图象是以点(2,3)为顶点的抛物线,并且这个图象通过点(3,1),求这个函数的解析式。(要求分别用一般式和顶点式去完成,对比两种方法)已知某二次函数当x=1时,有最大值-6,且图象经过点(2,-8),求此二次函数的解析式。思维小憩:用待定系数法求二次函数的解析式,什么时候使用顶点式y=a(x-m)2+n比较方便?知道顶点坐标或函数的最值时比较顶点式和一般式的优劣一般式:通用,但计算量大顶点式:简单,但有条件限制使用顶点式需要多少个条件?顶点坐标再加上一个其它点的坐标;对称轴再加上两个其它点的坐标;其实,顶点式同样需要三个条件才能求。灵活方便:交点式已知二次函数的图象与x轴交于(-2,0)和(1,0)两点,又通过点(3,-5),求这个二次函数的解析式。当x为何值时,函数有最值?最值是多少?已知二次函数的图象与x轴交于A(-2,0),B(3,0)两点,且函数有最大值2。求二次函数的解析式;设此二次函数图象顶点为P,求△ABP的面积思维小憩:用待定系数法求二次函数的解析式,什么时候使用顶点式y=a(x-x1)(x-x2)比较方便?知道二次函数图象和x轴的两个交点的坐标时使用交点式需要多少个条件?两个交点坐标再加上一个其它条件其实,交点式同样需要三个条件才能求求函数最值点和最值的若干方法:直接代入顶点坐标公式配方成顶点式借助图象的顶点在对称轴上这一特性,结合和x轴两个交点坐标求。二次函数的交点式已知二次函数的图象与x轴交于(-2,0)和(1,0)两点,又通过点(3,-5),求这个二次函数的解析式。当x为何值时,函数有最值?最值是多少?求函数最值点和最值的若干方法:直接代入顶点坐标公式配方成顶点式借助图象的顶点在对称轴上这一特性,结合和x轴两个交点坐标求。二次函数的三种式一般式:y=ax2+bx+c顶点式:y=a(x-m)2+n交点式:y=a(x-x1)(x-x2)已知二次函数y=ax2+bx+c的图象与x轴的一个交点坐标是(8,0),顶点是(6,-12),求这个二次函数的解析式。(分别用三种办法来求)二次函数的应用专题二:数形结合法简单的应用(学会画图)已知二次函数的图象与x轴交于A(-2,0),B(3,0)两点,且函数有最大值2。求二次函数的解析式;设此二次函数图象顶点为P,求△ABP的面积在直角坐标系中,点A在y轴的正半轴上,点B在x轴的负半轴上,点C在x轴的正半轴上,AC=5,BC=4,cos∠ACB=3/5。求A、B、C三点坐标;若二次函数图象经过A、B、C三点,求其解析式;求二次函数的对称轴和顶点坐标二次函数的应用专题三:二次函数的最值应用题二次函数最值的理论求函数y=(m+1)x2-2(m+1)x-m的最值。其中m为常数且m≠-1。最小值呢?呢?此时是最大值还是时,函数的最值是你能说明为什么当abacyabx4422最值应用题——面积最大某工厂为了存放材料,需要围一个周长160米的矩形场地,问矩形的长和宽各取多少米,才能使存放场地的面积最大。窗的形状是矩形上面加一个半圆。窗的周长等于6cm,要使窗能透过最多的光线,它的尺寸应该如何设计?BCDAO最值应用题——面积最大•用一块宽为1.2m的长方形铁板弯起两边做一个水槽,水槽的横断面为底角120º的等腰梯形。要使水槽的横断面积最大,它的侧面AB应该是多长?ADBC最值应用题——路程问题快艇和轮船分别从A地和C地同时出发,各沿着所指方向航行(如图所示),快艇和轮船的速度分别是每小时40km和每小时16km。已知AC=145km,经过多少时间,快艇和轮船之间的距离最短?(图中AC⊥CD)DCA145km最值应用题——销售问题某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天盈利最多?最值应用题——销售问题某商场以每件42元的价钱购进一种服装,根据试销得知这种服装每天的销售量t(件)与每件的销售价x(元/件)可看成是一次函数关系:t=-3x+204。写出商场卖这种服装每天销售利润y(元)与每件的销售价x(元)间的函数关系式;通过对所得函数关系式进行配方,指出商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适?最大利润为多少?最值应用题——运动观点在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm/秒的速度移动,同时,点Q从点B出发沿BC边向点C以2cm/秒的速度移动。如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:运动开始后第几秒时,△PBQ的面积等于8cm2设运动开始后第t秒时,五边形APQCD的面积为Scm2,写出S与t的函数关系式,并指出自变量t的取值范围;t为何值时S最小?求出S的最小值。QPCBAD最值应用题——运动观点在△ABC中,BC=2,BC边上的高AD=1,P是BC上任一点,PE∥AB交AC于E,PF∥AC交AB于F。设BP=x,将S△PEF用x表示;当P在BC边上什么位置时,S值最大。DFEPCBA在取值范围内的函数最值的最大值和最小值。,讨论函数设54302xxyx的最大值和最小值。,讨论函数设4421312xxyx二次函数的应用专题四:二次函数综合应用题如图所示,公园要建造圆形喷水池,在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25米。由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1米处达到距水面最大高度2.25米。(1)如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外?(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5米,要使水流不落到池外,此时水流的最大高度应达到多少米?(精确到0.1米)OA某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元。物价部门规定其销售单价不得高于每千克70元,也不得低于30元。市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克。在销售过程中,每天还要支出其它费用500元(天数不足一天时,按整天计算)。设销售单价为x元,日均获利为y元。求y关于x的函数关系式,并注明x的取值范围。将上面所求出的函数配方成顶点式,写出顶点坐标。并指出单价定为多少元时日均获利最多,是多少?某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件)。在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面32/3米,入水处距池边的距离为4米,同时,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误。(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为18/5米,问此次跳水会不会失误?并通过计算说明理由。解函数应用题的步骤:设未知数(确定自变量和函数);找等量关系,列出函数关系式;化简,整理成标准形式(一次函数、二次函数等);求自变量取值范围;利用函数知识,求解(通常是最值问题);写出结论。某新建商场设有百货部、服装部和家电部三个经营部,共有190名售货员,计划全商场日营业额(指每天卖出商品所收到的总金额)为60万元,由于营业性质不同,分配到三个部的售货员的人数也就不等,根据经验,各类商品每1万元营业额所需售货员人数如表(1),每1万元营业额所得利润情况如表(2)。商场将计划日营业额分配给三个经营部,设分配给百货部,服装部和家电部的营业额分别为x,y和z(单位:万元,x、y、z都是整数)。(1)请用含x的代数式分别表示y和z;(2)若商场预计每日的总利润为C(万元),且C满足19≤C≤19.7。问商场应如何分配营业额给三个经营部?各应分别安排多少名售货员?商品每1万元营业额所需人数百货类5服装类4家电类2商品每1万元营业额所得利润百货类0.3万元服装类0.5万元家电类0.2万元

1 / 28
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功